精英家教网 > 高中数学 > 题目详情

如图,已知是平行四边形所在平面外一点,分别是 的中点; 求证:平面

 

【答案】

证明:取PD的中点E,连接AE,NE。又M,N分别为中点,EN∥AM,且EN=AM,四边形AMNE是平行四边形,MN∥AE,又AE平面PAD,MN平面PAD,MN∥平面PAD。

【解析】本题主要考查了线面平行的判定定理,同时考查了空间想象能力,属于基础题.

取PD中点Q,连AQ、QN,根据四边形AMNQ为平行四边形可得MN∥AQ,根据直线与平面平行的判定定理可证得EF∥面PAD

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知四边形OBCD是平行四边形,|OB|=2,|OD|=4,∠DOB=60°,直线x=t(0<t<4)分别交平行四边行两边于不同的两点M、N.
(1)求点C和D的坐标,分别写出OD、DC和BC所在直线方程;
(2)写出OMN的面积关于t的表达式s(t),并求当t为何值时s(t)有最大值,并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四边形OBCD是平行四边形,|OB|=2,|OD|=4,∠DOB=60°,直线x=t(0<t<4)分别交平行四边行两边于不同的两点M、N.
(1)求点C和D的坐标,分别写出OD、DC和BC所在直线方程;
(2)写出OMN的面积关于t的表达式s(t),并求当t为何值时s(t)有最大值,并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省池州一中高二(上)期中数学试卷(文科)(解析版) 题型:解答题

如图,已知四边形OBCD是平行四边形,|OB|=2,|OD|=4,∠DOB=60°,直线x=t(0<t<4)分别交平行四边行两边于不同的两点M、N.
(1)求点C和D的坐标,分别写出OD、DC和BC所在直线方程;
(2)写出OMN的面积关于t的表达式s(t),并求当t为何值时s(t)有最大值,并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省池州一中高二(上)期中数学试卷(文科)(解析版) 题型:解答题

如图,已知四边形OBCD是平行四边形,|OB|=2,|OD|=4,∠DOB=60°,直线x=t(0<t<4)分别交平行四边行两边于不同的两点M、N.
(1)求点C和D的坐标,分别写出OD、DC和BC所在直线方程;
(2)写出OMN的面积关于t的表达式s(t),并求当t为何值时s(t)有最大值,并求出这个最大值.

查看答案和解析>>

同步练习册答案