精英家教网 > 高中数学 > 题目详情
精英家教网如图,平面ABCD⊥平面PAD,△APD是直角三角形,∠APD=90°,四边形ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=2BC,且AB=BC=PD=2,O是AD的中点,E,F分别是PC,OD的中点.
(Ⅰ)求证:EF∥平面PBO;
(Ⅱ)求二面角A-PF-E的正切值.
分析:(I)取BP中点G,连EG,由E为PC中点,由三角形的中位线定理,结合F为OD中点,易得EG与OF平行且相等,故四边形OFEG为平行四边形,进而EF∥GO,由线面平行的判定定理可得EF∥平面PBO;
(Ⅱ)连CO,OP,过E作EN⊥OP于N,过N作NH⊥PF于H,由二面角的定义,可得∠NHE为二面角A-PF-E的平面角,解三角形NHE,即可求出二面角A-PF-E的正切值.
解答:精英家教网解(Ⅰ)证明:取BP中点G,连EG,由E为PC中点
故EG=
1
2
BC,且EG∥BC
又∵F为OD中点
∴OF=
1
2
BC=
1
2
OD,且OF∥BC∥OD
∴EG与OF平行且相等,故四边形OFEG为平行四边形
∴EF∥GO则EF∥面PBO
(Ⅱ)连CO,OP,则BA∥CO,又AB⊥AD,面ABCD⊥面APD
∴CO⊥面APD
故面COP⊥面APD
过E作EN⊥OP于N,则EN⊥面APD
过N作NH⊥PF于H,连EH,
则EH⊥PF,故∠NHE为二面角A-PF-E的平面角
由于E为PC中点,故EN=
1
2
CO=
1
2
AB=1
∵∠APD=90°,AD=4,PD=2
由O为AD的中点,故OD=2,又F为OD的中点,可知PF⊥AD
从而NH∥OD又N是DP的中点∴H为PF的中点
∴NH=
1
2
OF=
1
2

∴tan∠NHE=
NE
NH
=2
∴二面角A-PF-E平面角的正切值为2.
点评:本题考查的知识点是二面角的平面角及求法,直线与平面平行的判定,其中(I)的关键是证得EF∥GO,(II)的关键是证得∠NHE为二面角A-PF-E的平面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩形,且AF=
12
AD=a,G是EF的中点,
(1)求证平面AGC⊥平面BGC;
(2)求GB与平面AGC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩形,且AF=
12
AD=a
,G是EF的中点.
(1)求证:平面AGC⊥平面BGC;
(2)求二面角B-AC-G的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•河东区一模)如图,平面ABCD⊥平面ABEF,ABCD是正方形.ABEF是矩形,G是线段EF的中点,且B点在平面ACG内的射影在CG上.
(1)求证:AG上平面BCG;
(2)求直线BE与平面ACG所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AF=
1
2
AD=a,G是EF的中点,则GB与平面AGC所成角的正弦值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AF=
3
2
AD
,G是EF的中点,则GB与平面AGC所成角的正弦值为(  )
A、
6
6
B、
21
6
C、
7
7
D、
21
7

查看答案和解析>>

同步练习册答案