精英家教网 > 高中数学 > 题目详情
(2009•成都模拟)若函数f(x)的定义域是[0,4],则函g(x)=
f(2x)
x
的定义域是(  )
分析:根据f(2x)中的2x和f(x)中的x的取值范围一样得到:0≤2x≤4,又分式中分母不能是0,即:x≠0,解出x的取值范围,得到答案.
解答:解:因为f(x)的定义域为[0,4],
所以对g(x),0≤2x≤4,但x≠0故x∈(0,2],
故选C.
点评:本题考查求复合函数的定义域问题,解决此类题目的关键是f[g(x)]中g(x)相当于f(x)中的x,建立不等式,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•成都模拟)设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦点分别是F1、F2,过点F2的直线交双曲线右支于不同的两点M、N,若△MNF1为正三角形,则该双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•成都模拟)在等比数列{an}中,若a2=4,a5=32,则公比应为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•成都模拟)已知圆的方程为x2+y2-6x-8y=0,设圆中过点(2,5)的最长弦与最短弦为分别为AB、CD,则直线AB与CD的斜率之和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•成都模拟)已知条件甲:函数f(x)=ax(a>0,a≠1)在其定义域内是减函数,条件乙:loga
1
2
>0
,则条件甲是条件乙的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•成都模拟)设函数f(x)=
x2+bx+c
2
其中b>0,c∈R.当且仅当x=-2时,函数f(x)取得最小值-2.
(1)求函数f(x)的表达式;
(2)若方程f(x)=x+a(a∈R)至少有两个不相同的实数根,求a取值的集合.

查看答案和解析>>

同步练习册答案