精英家教网 > 高中数学 > 题目详情
由命题“Rt△ABC中,两直角边分别为a,b,斜边上的高为h,则得
1
h2
=
1
a2
+
1
b2
”由此可类比出命题“若三棱锥S-ABC的三条侧棱SA,SB,SC两两垂直,长分别为a,b,c,底面ABC上的高为h,则得
 
考点:类比推理
专题:探究型,推理和证明
分析:立体几何中的类比推理主要是基本元素之间的类比:平面?空间,点?点或直线,直线?直线或平面,平面图形?平面图形或立体图形,故本题由平面上的直角三角形中的边与高的关系式类比立体中两两垂直的棱的三棱锥中边与高的关系即可.
解答: 解:∵PA、PB、PC两两互相垂直,∴PA⊥平面PBC.
设PD在平面PBC内部,且PD⊥BC,
由已知有:PD=
bc
b2+c2
,h=PO=
aPD
a2+PD2

h2=
a2b2c2
a2b2+b2c2+c2a2
,即
1
h2
=
1
a2
+
1
b2
+
1
c2

故答案为:
1
h2
=
1
a2
+
1
b2
+
1
c2
点评:类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.其思维过程大致是:观察、比较 联想、类推 猜测新的结论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理) 袋中有5个红球3个白球,若从中一次取一个,取三次,取后放回,取出二红一白的概率是(  )
A、
225
512
B、
15
128
C、
5
28
D、
15
28

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各命题正确的是(  )
A、终边相同的角一定相等
B、若α是第四象限的角,则π-α在第三象限
C、若|
a
|=|
b
|,则
a
=
b
D、若α∈(0,π),则sinα>cosα

查看答案和解析>>

科目:高中数学 来源: 题型:

π
(x+sinx)dx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)是定义在R上的奇函数,当x<0时,f(x)=(
1
3
x,则函数f-1(x)的零点为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Tn=n2,则通项an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,且不等式x2cosC+4sinC+6≥0对一切实数x恒成立.
(Ⅰ)求:角C的最大值;
(Ⅱ)若角C取得最大值,且c=2
3
,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

arcsin
3
2
+arccos(-
1
2
)
arctan(-
3
)
的值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
1
x-a
在(-∞,-1)上为减函数,则a的取值范围
 

查看答案和解析>>

同步练习册答案