(08年扬州中学) 已知函数有下列性质:“若
使得”成立,
(1)利用这个性质证明唯一.
(2)设A、B、C是函数图象上三个不同的点,求证:△ABC是钝角三角形.
科目:高中数学 来源: 题型:
(08年扬州中学) 已知数列,中,,且是函数
的一个极值点.
(1)求数列的通项公式;
(2) 若点的坐标为(1,)(,过函数图像上的点 的切线始终与平行(O 为原点),求证:当 时,不等式
对任意都成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年扬州中学) (16分)
用表示数列从第项到第项(共项)之和.
(1)在递增数列中,与是关于的方程(为正整数)的两个根.求的通项公式并证明是等差数列;
(2)对(1)中的数列,判断数列,,,…,的类型;
(3)对一般的首项为,公差为的等差数列,提出与(2)类似的问题,你可以得到怎样的结论,证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com