Èçͼ£¬ÒÑÖªÇúÏßC£ºy£½x2(0¡Üx¡Ü1)£¬O(0£¬0)£¬Q(1£¬0)£¬R(1£¬1)£®È¡Ï߶ÎOQµÄÖеãA1£¬¹ýA1×÷xÖáµÄ´¹Ïß½»ÇúÏßCÓÚP1£¬¹ýP1×÷yÖáµÄ´¹Ïß½»RQÓÚB1£¬¼Ça1Ϊ¾ØÐÎA1P1B1QµÄÃæ»ý£®·Ö±ðÈ¡Ï߶ÎOA1£¬P1B1µÄÖеãA2£¬A3£¬¹ýA2£¬A3·Ö±ð×÷xÖáµÄ´¹Ïß½»ÇúÏßCÓÚP2£¬P3£¬¹ýP2£¬P3·Ö±ð×÷yÖáµÄ´¹Ïß½»A1P1£¬RB1ÓÚB2£¬B3£¬¼Ça2ΪÁ½¸ö¾ØÐÎA2P2B2 A1Óë¾ØÐÎA3P3B3B1µÄÃæ»ýÖ®ºÍ£®ÒÔ´ËÀàÍÆ£¬¼ÇanΪ2n£­1¸ö¾ØÐÎÃæ»ýÖ®ºÍ£¬´Ó¶øµÃÊýÁÐ{an}£¬ÉèÕâ¸öÊýÁеÄÇ°nÏîºÍΪSn£®

(£É)Çóa2Óëan£»

(¢ò)ÇóSn£¬²¢Ö¤Ã÷Sn£¼£®

 

¡¾´ð°¸¡¿

(£É) £¬£»£¨¢ò£©¼û½âÎö.

¡¾½âÎö¡¿

ÊÔÌâ·ÖÎö£º£¨¢ñ£©¸ù¾ÝÌâÒâÏÈд³ö¸÷µã×ø±ê£¬ÔÙ·Ö±ðÇó£¬È»ºó×ܽáÓëÇúÏß½»µã×ø±ê£¬´Ó¶øÔÙÇ󣻣¨¢ò£©ÓÉ£¨¢ñ£©ÖªµÄ±í´ïʽ£¬ÏȰѱäÐÎΪ²îµÄÐÎʽ£¬ÔÙÇó±í´ïʽ£¬ÀûÓõȱÈÊýÁÐÇ°ÏîºÍ¹«Ê½Çó£¬È»ºó°ÑÓë½øÐбȽϣ¬¼´µÃÖ¤.

ÊÔÌâ½âÎö£º(£É) ÓÉÌâÒâÖªP1(£¬)£¬¹Êa1£½¡Á£½£®

ÓÖP2(£¬)£¬P3(£¬)£¬

¹Êa2£½¡Á[£«£­]£½¡Á(12£«32£­22)£½£®

ÓÉÌâÒ⣬¶ÔÈÎÒâµÄk£½1£¬2£¬3£¬£¬n£¬ÓÐ

(£¬)£¬i£½0£¬1£¬2£¬£¬2k£­1£­1£¬

¹Êan£½¡Á[£«£­£«£­£«£«£­]

£½¡Á[12£«32£­22£«52£­42£«¡­£«(2n£­1)2£­(2n£­2)2]

£½¡Á{1£«(4¡Á1£«1)£«(4¡Á2£«1)£«¡­£«[4¡Á(2n£­1£­1)£«1]}

£½¡Á

£½£®

ËùÒÔa2£½£¬an£½£¬n¡ÊN*£®        10·Ö

(¢ò)ÓÉ(£É)Öªan£½£¬n¡ÊN*£¬

¹ÊSn£½£­£½£­£½£®

ÓÖ¶ÔÈÎÒâµÄn¡ÊN*£¬ÓУ¾0£¬

ËùÒÔSn£½£¼£®               14·Ö

¿¼µã£º1¡¢µÝÍƹ«Ê½£»2¡¢µÈ±ÈÊýÁеÄÇ°nÏîºÍ¹«Ê½.

 

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÑÖªÇúÏßC£ºy=
1
x
£¬Cn£ºy=
1
x+2-n
(n¡ÊN*)
£®´ÓCÉϵĵãQn£¨xn£¬yn£©×÷xÖáµÄ´¹Ïߣ¬½»CnÓÚµãPn£¬ÔÙ´ÓPn×÷yÖáµÄ´¹Ïߣ¬½»CÓÚµãQn+1£¨xn+1£¬yn+1£©£®Éèx1=1£¬an=xn+1-xn£¬bn=yn-yn+1£®
£¨I£©Çóa1£¬a2£¬a3µÄÖµ£»
£¨II£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨III£©Éè¡÷PiQiQi+1£¨i¡ÊN*£©ºÍÃæ»ýΪSi£¬¼Çf(n)=
n
i=1
Si
£¬ÇóÖ¤f(n)£¼
1
6
.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÇúÏßC£ºy=
1
x
ÔÚµãP£¨1£¬1£©´¦µÄÇÐÏßÓëxÖá½»ÓÚµãQ1£¬¹ýµãQ1×÷xÖáµÄ´¹Ïß½»ÇúÏßCÓÚµãP1£¬ÇúÏßCÔÚµãP1´¦µÄÇÐÏßÓëxÖá½»ÓÚµãQ2£¬¹ýµãQ2×÷xÖáµÄ´¹Ïß½»ÇúÏßCÓÚµãP2£¬¡­£¬ÒÀ´ÎµÃµ½Ò»ÏµÁеãP1¡¢P2¡¢¡­¡¢Pn£¬ÉèµãPnµÄ×ø±êΪ£¨xn£¬yn£©£¨n¡ÊN*£©£®
£¨¢ñ£©ÇóÊýÁÐ{xn}µÄͨÏʽ£»
£¨¢ò£©ÇóÈý½ÇÐÎOPnPn+1µÄÃæ»ýS¡÷OPnPn+1
£¨¢ó£©ÉèÖ±ÏßOPnµÄбÂÊΪkn£¬ÇóÊýÁÐ{nkn}µÄÇ°nÏîºÍSn£¬²¢Ö¤Ã÷Sn£¼
4
9
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2006•ÄϾ©¶þÄ££©Èçͼ£¬ÒÑÖªÇúÏßC£ºy=
1
x
£¬Cn£ºy=
1
x+2-n
(n¡ÊN*)
£®´ÓCÉϵĵãQn£¨xn£¬yn£©×÷xÖáµÄ´¹Ïߣ¬½»CnÓÚµãPn£¬ÔÙ´ÓµãPn×÷yÖáµÄ´¹Ïߣ¬½»CÓÚµãQn+1£¨xn+1£¬yn+1£©£¬Éèx1=1£¬an=xn+1-xn£¬bn=yn-yn+1£®
£¨¢ñ£©ÇóQ1£¬Q2µÄ×ø±ê£»
£¨¢ò£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ó£©¼ÇÊýÁÐ{an•bn}µÄÇ°nÏîºÍΪSn£¬ÇóÖ¤£ºSn£¼
1
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÇúÏßC£ºy=
1
x
£¬Cn£ºy=
1
x+2-n
£¨n¡ÊN*£©£®´ÓCÉϵĵãQn£¨xn£¬yn£©×÷xÖáµÄ´¹Ïߣ¬½»CnÓÚµãPn£¬ÔÙ¹ýµãPn×÷yÖáµÄ´¹Ïߣ¬½»CÓÚµãQn+1£¨xn+1£¬yn+1£©É裬x1=1£¬an=xn+1-xn£¬bn=yn -yn+1£®
£¨1£©ÇóµãQ1¡¢Q2µÄ×ø±ê£»
£¨2£©ÇóÊýÁÐ{an} µÄͨÏʽ£»
£¨3£©¼ÇÊýÁÐ{an•yn+1} µÄÇ°nÏîºÍΪSn£¬ÇóÖ¤sn£¼
1
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÑÖªÇúÏßC£ºy=x2£¨0¡Üx¡Ü1£©£¬O£¨0£¬0£©£¬Q£¨1£¬0£©£¬R£¨1£¬1£©£®È¡Ï߶ÎOQµÄÖеãA1£¬¹ýA1×÷xÖáµÄ´¹Ïß½»ÇúÏßCÓÚP1£¬¹ýP1×÷yÖáµÄ´¹Ïß½»RQÓÚB1£¬¼Ça1Ϊ¾ØÐÎA1P1B1QµÄÃæ»ý£®·Ö±ðÈ¡Ï߶ÎOA1£¬P1B1µÄÖеãA2£¬A3£¬¹ýA2£¬A3·Ö±ð×÷xÖáµÄ´¹Ïß½»ÇúÏßCÓÚP2£¬P3£¬¹ýP2£¬P3·Ö±ð×÷y ÖáµÄ´¹Ïß½»A1P1£¬RB1ÓÚB2£¬B3£¬¼Ça2ΪÁ½¸ö¾ØÐÎA2P2B2A1Óë¾ØÐÎA3P3B3B1µÄÃæ»ýÖ®ºÍ£®ÒÔ´ËÀàÍÆ£¬¼ÇanΪ2n-1¸ö¾ØÐÎÃæ»ýÖ®ºÍ£¬´Ó¶øµÃÊýÁÐ{an}£¬ÉèÕâ¸öÊýÁеÄÇ°nÏîºÍΪSn£®
£¨¢ñ£© Çóa2Óëan£»
£¨¢ò£© ÇóSn£¬²¢Ö¤Ã÷Sn£¼
13
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸