精英家教网 > 高中数学 > 题目详情
(2012•蓝山县模拟)如图,在体积为1的三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥AC,AC=AA1=1,P为线段AB上的动点.
(1)求证:CA1⊥C1P;
(2)当AP为何值时,二面角C1-PB1-A1的大小为
π6
分析:(1)先以A为原点,AC,AB,AA1所在的直线分别为x轴,y轴,z轴建立直角坐标系,求出各点的坐标以及对应向量的坐标,进而得到
CA1
C1P
=0即可得到结论;
(2)分别求出两个半平面的法向量,再代入向量的夹角计算公式即可得到结论.
解答:解:(1)证明:∵AA1⊥底面ABC,∴AA1⊥AC,AA1⊥AB.
又∵AB⊥AC,
∴以A为原点,AC,AB,AA1所在的直线分别为x轴,y轴,z轴建立直角坐标系.
又∵V ABC-A 1B 1C 1 =
1
2
AB×AC×AA1=1,∴AB=2.(2分)
设AP=m,则P(0,m,0),而C1(1,0,1),C(1,0,0),A1(0,0,1),B1(0,2,1)
CA1
=(-1,0,1),
C1P
=(-1,m,-1),
B1C1
=(-1,2,0)
CA1
C1P
=(-1)×(-1)+0×m+1×(-1)=0,
∴CA1⊥C1P.(6分)
(2)设平面C1PB1的一个法向量
n
=(x,y,z),
n
B1C1
=0 
n
C1P
=0
-x+2y=0
-x+my-z=0

令y=1,则
n
=(2,1,m-2),(9分)
而平面A1B1P的一个法向量
AC
=(1,0,0),
依题意可知cos
π
6
=
|n•
AC
|
|n||
AC
|
=
3
2

∴m=2+
3
3
(舍去)或m=2-
3
3

∴当AP=2-
3
3
时,二面角C1-PB1-A1的大小为
π
6
.(12分)
点评:本题主要考查用空间向量求平面间的夹角以及用向量语言表述线线的垂直、平行关系.是对向量知识在立体几何中应用的综合考察.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•蓝山县模拟)已知m是一个给定的正整数,如果两个整数a,b被m除得的余数相同,则称a与b对模m同余,记作a≡b(modm),例如:5≡13(mod4).若22010≡r(mod7),则r可以为(  )

查看答案和解析>>

同步练习册答案