精英家教网 > 高中数学 > 题目详情
(文科)已知函数,数列{an}满足
(1)求数列{an}的通项公式;
(2)记Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1,求Tn
(3)令,若时n∈N*恒成立,求最小的正整数m.
【答案】分析:(1)先由函数,化简,得,数列{an}为等差数列,按照等差数列通项公式来求.
(2)∵Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1,化简得,Tn==,可用分组求和.
(3)先根据an求bn,再用裂项求和求Sn,数列的最值问题有两种思路,一是利用数列的函数性质,二是利用数列的递推性质.
解答:解:(1)由 得
∴数列{an}为等差数列
 (n∈N*)
(2)Tn=a2(a1-a3)+a4(a3-a5)+…+a2n(a2n-1-a2n+1
=
=
(3)  b1=3也适合上式.

=
恒成立
9n2n+1<m-20002对n∈N*恒成立

,∴m≥2009
故最小的正整数m为2009
点评:本题综合考查了数列通项、数列求和、数列的函数性质,解题时要认真观察,仔细把握,灵活运用
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文科)已知函数f(x)=
1
3
x3+
1
2
ax2+x+b(a,b,∈R)
在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,则a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科)已知函数f(x)=
2x+3
3x
,数列{an}满足a1=1,an+1=f(
1
an
)(n∈N*)

(1)求数列{an}的通项公式;
(2)记Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1,求Tn
(3)令bn=
1
an-1an
(n≥2),b1=3,Sn=b1+b&2+…+bn
,若Sn
m-2000
2
时n∈N*恒成立,求最小的正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•甘肃一模)(文科)已知函数f(x)=3sin2x+2
3
sinxcosx+cos2x,x∈R

(1)求函数f(x)的最大值与单调递增区间;
(2)求使f(x)≥3成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(文科)已知函数数学公式,数列{an}满足数学公式
(1)求数列{an}的通项公式;
(2)记Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1,求Tn
(3)令数学公式,若数学公式时n∈N*恒成立,求最小的正整数m.

查看答案和解析>>

同步练习册答案