精英家教网 > 高中数学 > 题目详情
化简:sin(nπ-
3
)×cos(nπ+
3
)(n∈z)
考点:运用诱导公式化简求值,二倍角的正弦
专题:三角函数的求值
分析:运用诱导公式、两角和与差的正弦余弦公式化简,因为cos2(nπ)=1(n∈z),即可求值.
解答: 解:sin(nπ-
3
)×cos(nπ+
3
)(n∈z)
=[sin(nπ)cos
3
-cos(nπ)sin
3
]×[cos(nπ)cos
3
-sin(nπ)sin
3
](n∈z)
=[-cos(nπ)sin
3
]×[cos(nπ)cos
3
](n∈z)
=[-cos(nπ)
3
2
]×[cos(nπ)(-
1
2
)](n∈z)
=
3
2
cos(nπ)×
1
2
cos(nπ)(n∈z)
=
3
4
×cos2(nπ)
=
3
4
点评:本题主要考察了运用诱导公式化简求值,两角和与差的正弦余弦公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C方程(x-2)2+(y-1)2=5,设P,Q分别是直线l:x+y+2=0和圆C上的动点,B点是圆C与y轴的交点,求|PB|+|PQ|的最小值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈R,函数f(x)=x|x-a|+2x.
(1)若a=2,求函数f(x)在区间[0,3]上的最大值;
(2)若a>2,写出函数f(x)的单调区间(不必证明);
(3)若存在a∈[3,6],使得关于x的方程f(x)=t+2a有三个不相等的实数解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:直线a,b,平面α,β,γ,给出下列四个命题:
①a∥b,a⊥α,b∥β,则α⊥β;  
②a∥b,a∥α,b∥β,则α∥β;
③α⊥γ,β⊥γ,则α∥β;       
④a∥α,a∥β,α∩β=b,则a∥b.
其中真命题是
 
(填写真命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA⊥平面ABCD,四边形ABCD是矩形,E、F分别是AB,PD的中点.
(1)求证:AF∥平面PCE;
(2)若二面角P-CD-B为45°,AD=2,CD=3,求四面体FPCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,若输出的结果是7,则判断框内m的取值范围是(  )
A、(30,42]
B、(42,56]
C、(56,72]
D、(72,90]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2
2+x
2-x
,求函数定义域,奇偶性,及在定义域上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+mx-n=0},集合B={x|x(x-1)=0},若A?B,求m、n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=
400x-
1
2
x2,(0≤x<400)
86000,(x≥400)
(其中x是仪器的月产量).
(1)将利润表示为月产量的函数f(x);
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)

查看答案和解析>>

同步练习册答案