精英家教网 > 高中数学 > 题目详情
10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e=$\frac{\sqrt{6}}{3}$,以原点O为圆心,椭圆C的长半轴为半径的圆与直线2x-$\sqrt{2}$y+6=0相切,则椭圆C标准方程$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1.

分析 利用直线与圆相切的性质可得:a,再利用$\frac{c}{a}=\frac{\sqrt{6}}{3}$,b2=a2-c2,即可得出.

解答 解:∵以原点O为圆心,椭圆C的长半轴为半径的圆与直线2x-$\sqrt{2}$y+6=0相切,
∴$\frac{6}{\sqrt{{2}^{2}+(\sqrt{2})^{2}}}$=a,解得a=$\sqrt{6}$,
又$\frac{c}{a}=\frac{\sqrt{6}}{3}$,b2=a2-c2
解得c=2,b2=2.
∴椭圆的标准方程为:$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1.
故答案为:$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1.

点评 本题考查了直线与圆相切的性质、点到直线的距离公式、椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.为了对某校高二年级学生参加社区服务次数进行估计,随机抽取1个容量为M的样本,根据样本作出了频率分布表如下:
分组频数频率
[10,15)100.25
[15,20)25n
[20,25)mp
[25,30]20.05
合计M1
(1)求出表中m、n的值;
(2)若该校高二学生有240人,试估计该校高二学生参加社区服务的次数在区间[20,25)内的人数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=log3(-2x+x2)的定义域是(  )
A.(0,2)B.[0,2]C.(-∞,0)∪(2,+∞)D.(-∞,0]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知一次函数f(x)=(3m2-1)x-m2+7m+4.若f(x)是增函数,且f(1)=0.
(1)求m的值;
(2)若f(x2+1)>x2+120,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)离心率为2,抛物线y2=px(p>0)的准线方程x=-$\frac{1}{4}$,则$\frac{{b}^{2}}{{a}^{2}}$+p=(  )
A.4B.$\frac{4}{3}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}中a1=1,an+1-2an=3•(2)n-1,求an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知等比数列{an}的前n项和为Sn,且a1+a3=4,a2+a4=2,则log2($\frac{{S}_{2016}}{{a}_{2016}}$+1)=(  )
A.2015B.2016C.22015D.22016

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆方程$\frac{{x}^{2}}{9}$+y2=1,直线l过点A(1,0),当l的斜率为$\frac{3}{4}$时,求l被椭圆截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求cos2$\frac{5π}{12}$+sin2$\frac{π}{12}$+cos$\frac{5π}{12}$cos$\frac{π}{12}$.

查看答案和解析>>

同步练习册答案