精英家教网 > 高中数学 > 题目详情
5.若函数f(x)=$\frac{{x}^{2}+c+1}{\sqrt{{x}^{2}+c}}$的最小值是2,则实数c的取值范围是(  )
A.c≤1B.c≥1C.c<0D.c∈R

分析 化简f(x)=$\frac{{x}^{2}+c+1}{\sqrt{{x}^{2}+c}}$=$\sqrt{{x}^{2}+c}$+$\frac{1}{\sqrt{{x}^{2}+c}}$,从而利用基本不等式可得1-c≥0,从而解得.

解答 解:∵f(x)=$\frac{{x}^{2}+c+1}{\sqrt{{x}^{2}+c}}$=$\sqrt{{x}^{2}+c}$+$\frac{1}{\sqrt{{x}^{2}+c}}$,
∴f(x)≥2,
(当且仅当$\sqrt{{x}^{2}+c}$=$\frac{1}{\sqrt{{x}^{2}+c}}$,即x2=1-c有解时,等号成立),
故1-c≥0,
解得,c≤1;
故选:A.

点评 本题考查了基本不等式的应用及函数的最值的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.求数列2-$\frac{1}{3}$,4+$\frac{1}{9}$,6-$\frac{1}{27}$,8+$\frac{1}{81}$,…,2n+$\frac{1}{(-3)^{n}}$的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若执行如图的程序框图,则输出的n的值是(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,角A、B、C的对边分别是a、b、c,其中b=c=2,若函数f(x)=$\frac{1}{4}{x^3}-\frac{3}{4}x$的极大值是cosA,则△ABC的面积等于(  )
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在数列{an}中,a1=$\frac{5}{3}$,且3an+1=an+2.
(1)设bn=an-1,证明:数列{bn}是等比数列,并求出{an}的通项公项;
(2)设${c_n}=log_3^{\frac{{{{({a_n}-1)}^2}}}{4}}$,数列$\left\{{\frac{1}{{{c_n}{c_{n+2}}}}}\right\}$的前n项和为Tn,是否存在最小的正整数m,使得对于任意的n∈N*,均有Tn<$\frac{m}{16}$成立,若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ln(3-x)+$\frac{1}{\sqrt{x+2}}$的定义域为集合A,集合B={x|x<a}.
(1)求集合A;
(2)若A?B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若复数z=$\frac{a-i}{1-i}$(a∈R,i是虚数单位)是纯虚数,则复数3-z的共轭复数是(  )
A.3+iB.3-iC.3+2iD.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.复数z=(3+4i)2的虚部为24,z的共轭复数$\overline z$=-7-24i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设集合A={x|1≤x<4},B={x|2a≤x<3-a}.若A∪B=A,则实数a的取值范围$a≥\frac{1}{2}$.

查看答案和解析>>

同步练习册答案