精英家教网 > 高中数学 > 题目详情
精英家教网如图,AB是圆O的直径,C、D是圆O上的点,∠CBA=60°,∠ABD=45°
CD
=x
OA
+y
BC
,则x+y=(  )
A、-
3
3
B、-
1
3
C、
2
3
D、-
3
分析:利用向量的线性运算,可得
CD
=(1-
2
3
)
BC
+(
1
3
-1)
OA
,结合条件,即可确定结论.
解答:精英家教网解:如图,过C作CE⊥OB于E,因为AB是圆O的直径,C、D是圆O上的点,∠CBA=60°所以E为OB的中点,连结OD,则
CE
=
3
2
OD

CE
=
CB
+
BE
=-
BC
+
1
2
OA

CD
=
CO
+
OD
=-
AO
+
BC
+
2
3
CE

=-
AO
+
BC
+
2
3
(-
BC
+
1
2
OA
)
=(1-
2
3
)
BC
+(
1
3
-1)
OA

CD
=x
OA
+y
BC

∴x+y=(1-
2
3
)+(
1
3
-1)
=-
3
3

故选A.
点评:本题考查向量在几何中的应用,考查分析问题解决问题的能力,利用已知向量表示所求向量是解题的难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理科)如图的多面体是底面为平行四边形的直四棱柱ABCD-A1B1C1D1,经平面AEFG所截后得到的图形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
精英家教网
(Ⅰ)求证:BD⊥平面ADG;
(Ⅱ)求平面AEFG与平面ABCD所成锐二面角的余弦值.

(文科)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求证:AF⊥平面CBF;
(Ⅱ)设FC的中点为M,求证:OM∥平面DAF.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱的一个底面ABC内接于圆O,AB是圆O的直径.
(1)求证:平面ACD⊥平面ADE;
(2)若AB=2,BC=1,tan∠EAB=
3
2
,求几何体EDABC的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理科)如图的多面体是底面为平行四边形的直四棱柱ABCD-A1B1C1D1,经平面AEFG所截后得到的图形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求证:BD⊥平面ADG;
(Ⅱ)求平面AEFG与平面ABCD所成锐二面角的余弦值.

(文科)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求证:AF⊥平面CBF;
(Ⅱ)设FC的中点为M,求证:OM∥平面DAF.

查看答案和解析>>

科目:高中数学 来源:2010年辽宁省锦州市高考数学二模试卷(解析版) 题型:解答题

(理科)如图的多面体是底面为平行四边形的直四棱柱ABCD-A1B1C1D1,经平面AEFG所截后得到的图形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求证:BD⊥平面ADG;
(Ⅱ)求平面AEFG与平面ABCD所成锐二面角的余弦值.

(文科)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求证:AF⊥平面CBF;
(Ⅱ)设FC的中点为M,求证:OM∥平面DAF.

查看答案和解析>>

科目:高中数学 来源:陕西省宝鸡中学2010届高三适应性训练(数学理) 题型:填空题

 A.(参数方程与极坐标)

直线与直线的夹角大小为         

 

B.(不等式选讲)要使关于x的不等式在实数

范围内有解,则A的取值范围是                  

C.(几何证明选讲) 如图所示,在圆O中,AB是圆O的直

径AB =8,E为OB.的中点,CD过点E且垂直于AB,

EF⊥AC,则

CF•CA=            

 

 

 

 

查看答案和解析>>

同步练习册答案