精英家教网 > 高中数学 > 题目详情
已知⊙O的半径为3,直线l与⊙O相切,一动圆与l相切,并与⊙O相交的公共弦恰为⊙O的直径,求动圆圆心的轨迹方程.
分析:设动圆圆心为M(x,y),欲求其轨迹方程,即寻找其坐标x,y之间的关系式,利用圆中线段间的关系结合勾股定理即可得.
解答:解:取过O点且与l平行的直线为x轴,过O点且垂直于l的直线为y轴,建立直角坐标系.
设动圆圆心为M(x,y),
⊙O与⊙M的公共弦为AB,⊙M与l切于点C,则|MA|=|MC|.
∵AB为⊙O的直径,
∴MO垂直平分AB于O.
由勾股定理得|MA|2=|MO|2+|AO|2=x2+y2+9,而|MC|=|y+3|,
x2+y2+9
=|y+3|.
化简得x2=6y,这就是动圆圆心的轨迹方程.
点评:求曲线的轨迹方程是解析几何的基本问题.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•红桥区一模)如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E.已知⊙O的半径为3,PA=2,则CD=
24
5
24
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(极坐标与参数方程选讲选做题)设曲线C的参数方程为
x=2+3cosθ
y=-1+3sinθ
(θ为参数),直线l的方程为x-3y+2=0,则曲线C上的动点P(x,y)到直线l距离的最大值为
3+
7
10
10
3+
7
10
10

B.(不等式选讲选做题)若存在实数x满足不等式|x-3|+|x-5|<m2-m,则实数m的取值范围为
(-∞,-1)∪(2,+∞)
(-∞,-1)∪(2,+∞)

C.(几何证明选讲选做题)如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E.已知⊙O的半径为3,PA=2,则PC=
4
4
.OE=
5
9
5
9

查看答案和解析>>

科目:高中数学 来源:2006年高考第一轮复习数学:7.5 圆的方程(解析版) 题型:解答题

已知⊙O的半径为3,直线l与⊙O相切,一动圆与l相切,并与⊙O相交的公共弦恰为⊙O的直径,求动圆圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知⊙O的半径为3,直线l与⊙O相切,一动圆与l相切,并与⊙O相交的公共弦恰为⊙O的直径,求动圆圆心的轨迹方程.

查看答案和解析>>

同步练习册答案