精英家教网 > 高中数学 > 题目详情
(2012•北海一模)如图,在120°二面角α-l-β内半径为1的圆O1与半径为2的圆O2分别在半平面α、β内,且与棱l切于同一点P,则以圆O1与圆O2为截面的球的表面积为(  )
分析:设球心为O,连接O1P,O2P,则O,O1,O2,P四点共圆,且OP为所在圆的直径,也为球的半径.在三角形O1PO2中,由余弦定理得出O1O2=
7
,再由正弦定理求出OP.利用球表面积公式计算.
解答:解:设球心为O,连接O1P,O2P,则O,O1,O2,P四点共圆,且OP为球的半径.
根据球的截面圆的性质,OO1⊥α,OO2⊥β.
可知∠O1PO2为二面角α-l-β的平面角,∠O1PO2=120°,
从而,∠O1OO2=60°,在三角形O1PO2中,由余弦定理得出O1O2=
7
,再由正弦定理得出
OP=
O1O2
sin∠O1OO2
=
7
3
2
=
2
21
3

球的表面积S=4πR2=4π×(
2
21
3
)2
=
112π
3

故选C.
点评:本题考查与二面角有关的立体几何综合题,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.(选项C应该改为:
112π
3
.)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•北海一模)定义一种运算(a,b)*(c,d)=ad-bc,若函数f(x)=(1,log3x)*(tan
13π
4
,(
1
5
)x)
,x0是方程f(x)=0的解,且0<x1<x0,则f(x1)的值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北海一模)已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(I)求数列{an}的通项;
(II)记bn=2an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北海一模)设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2
F1F2
+
F2Q
=
0
,则椭圆C的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北海一模)i为虚数单位,复平面内表示复数z=
1+i
i
的点在(  )

查看答案和解析>>

同步练习册答案