精英家教网 > 高中数学 > 题目详情

(本小题共14分)

已知椭圆:两个焦点之间的距离为2,且其离心率为.

(Ⅰ) 求椭圆的标准方程;

(Ⅱ) 若为椭圆的右焦点,经过椭圆的上顶点B的直线与椭圆另一个交点为A,且满

,求外接圆的方程.

(共14分)

解:(Ⅰ)  ,                              ……………1分

       

         ,                                     …………4分

        椭圆的标准方程是 .                          ………………5分

(Ⅱ)由已知可得,                               …………………6分

       设,则

        

         ,即 ,                        …………………8分

         代入,得:

.                                    ………………10分

时,,的外接圆是以为圆心,以1为半径的圆,该外接圆的方程为;                 ………………12分

时,,所以是直角三角形,其外接圆是以线段为直径的圆.由线段的中点以及可得的外接圆的方程为.                       ………………14分

综上所述,的外接圆的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题共14分)

      数列的前n项和为,点在直线

上.

   (I)求证:数列是等差数列;

   (II)若数列满足,求数列的前n项和

   (III)设,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题共14分)

如图,四棱锥的底面是正方形,,点E在棱PB上。

(Ⅰ)求证:平面

(Ⅱ)当EPB的中点时,求AE与平面PDB所成的角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:

 (2009北京理)(本小题共14分)

已知双曲线的离心率为,右准线方程为

(Ⅰ)求双曲线的方程;

(Ⅱ)设直线是圆上动点处的切线,与双曲线

于不同的两点,证明的大小为定值.

查看答案和解析>>

科目:高中数学 来源:2013届度广东省高二上学期11月月考理科数学试卷 题型:解答题

(本小题共14分)在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PD=DC,点E是PC的中点,作EFPB交PB于点F

⑴求证:PA//平面EDB

⑵求证:PB平面EFD

⑶求二面角C-PB-D的大小

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010年北京市崇文区高三下学期二模数学(文)试题 题型:解答题

(本小题共14分)

正方体的棱长为的交点,的中点.

(Ⅰ)求证:直线∥平面

(Ⅱ)求证:平面

(Ⅲ)求三棱锥的体积.

 

查看答案和解析>>

同步练习册答案