精英家教网 > 高中数学 > 题目详情
一椭圆的四个顶点为A1,A2,B1,B2,以椭圆的中心为圆心的圆过椭圆的焦点且内切于四边形A1B1A2B2,则椭圆的椭圆的离心率为
 
分析:根据椭圆的中心为圆心以半焦距为半径的圆内切于四边形A1B1A2B2,可知半焦距=半短轴,进而求得b和c的关系,则a和c的关系可求得,进而求得离心率.
解答:解:以椭圆的中心为圆心以半焦距为半径的圆内切于四边形A1B1A2B2,则
半焦距=半短轴
即 b=c,所以 a=
2
c
∴e=
c
a
=
2
2

故答案为
2
2
点评:本题主要考查了椭圆的简单性质.考查了学生分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两焦点F1、F2和短轴的两端点B1、B2正好是一正方形的四个顶点,且焦点到椭圆上一点的最近距离为
2
-1

(1)求椭圆的标准方程;
(2)设P是椭圆上任一点,MN是圆C:x2+(y-2)2=1的任一条直径,求
PM
PN
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC为正三角形,点A,B为椭圆的焦点,点C为椭圆一顶点,则该三角形的面积与椭圆的四个顶点连成的菱形的面积之比为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•茂名一模)已知椭圆C1
x2
a2
+
y2
b2
=1   (a>b>0)
的离心率为
3
3
,连接椭圆的四个顶点得到的四边形的面积为2
6

(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(3)设O为坐标原点,取C2上不同于O的点S,以OS为直径作圆与C2相交另外一点R,求该圆面积的最小值时点S的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淄博二模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
1
2
,连接椭圆的四个顶点得到的菱形的面积为4
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)圆x2+y2=1的一条切线l与椭圆C相交于A,B两点,问是否存在上述直线l使
OA
OB
=0
成立?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省济宁市汶上一中高二(下)期末数学试卷(理科)(解析版) 题型:解答题

已知椭圆的四个顶点恰好是一边长为2,一内角为60°的菱形的四个顶点.
(Ⅰ)求椭圆M的方程;
(Ⅱ)直线l与椭圆M交于A,B两点,且线段AB的垂直平分线经过点,求△AOB(O为原点)面积的最大值.

查看答案和解析>>

同步练习册答案