精英家教网 > 高中数学 > 题目详情
13.圆锥的轴截面是正三角,则它的侧面展开扇形圆心角为π弧度.

分析 画出圆锥的侧面展开图,根据展开图与圆锥的对应东西解出.

解答 解:设圆锥的底面半径为r,母线为l,则l=2r,于是侧面展开图的扇形半径为l,弧长为2πr,
∴圆心角α=$\frac{2πr}{l}$=π.
故答案为:π.

点评 本题考查了圆锥的侧面展开图,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,直角三角形ABC的顶点坐标A(-2,0),顶点C的坐标为(4,0),直角顶点B在y轴上.M为直角三角形ABC外接圆的圆心,求圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=${log_{\frac{1}{3}}}(1-{x^2})$的单调递增区间是[0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.直线l1:x-y=0与l2:2x-3y+1=0的交点在直线mx+3y+5=0上,则m的值为-8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在棱长为1的正方体ABCD-A1B1C1D1中,E为AB的中点.
(1)求三棱锥A-A1EC的体积;
(2)求异面直线BD1与CE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=$\sqrt{9-{3^x}}$的值域是(  )
A.[0,+∞)B.[0,3]C.[0,3)D.(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知三棱柱ABC-A1B1C1的底面为等腰三角形,且平面B1BCC1⊥平面ABC,C1B⊥BC;M是线段AB上的点,且∠ACM=∠BCM=60°,CA=CB=$\frac{\sqrt{3}}{3}$C1B.
(1)求证:AC1⊥CM;
(2)求直线CC1与平面B1CM所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,O是平行四边形ABCD所成平面外一点,若OA=9,OB=$\sqrt{61}$,CD=4,求异面直线OA与CD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.lg$\frac{1}{100}$+ln$\sqrt{e}$+log45•log516=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案