精英家教网 > 高中数学 > 题目详情
函数f(x)=
x2+5x
6
,0≤x<3
10-2x,3≤x≤5
,?m,n∈[0,5](m<n),使f(x)在[m,n]上的值域为[m,n],则这样的实数对(m,n)共有(  )
A、1个B、2个C、3个D、4个
分析:先画出函数的图象,结合函数的图象分①0≤m<n<3,②3≤m<n≤5,③0≤m<3<n<5三种情况,判断函数的表达式及在对应区间上的单调性可求.
解答:解:先画出函数的图象,如图所示,由题意可得m≠0
①当0≤m<n<3时,f(x)=
x2+5x
6
在区间[m,n]单调递增,则
f(m)=m
f(n)=n
?
m2+5m=6m
n2+5n=6n
?
m=0
n=1

②当3≤m<n≤5,f(x)=10-2x在[m,n]单调递减,则
f(m)=n
f(n)=m
?
10-2m=n
10-2n=m
?m=n(舍)
③当0≤m<3<n<5时,可知函数的最大值为f(3)=4=n,从而可得函数的定义域及值域为[m,4],而f(4)=2
(i)当m=2时,定义域[2,4],f(2)=
7
3
>f(4)=2,故值域为[2,4]符合题意
(ii)当m<2时,f(m)=
m2+5m
6
=m可得m=1,n=4,符合题意
(iii)当m=0时,定义域[0,4],f(3)=4>f(4)=2,故值域为[0,4]符合题意
综上可得符合题意的有(0,1),(0,4),(1,4),(2,4)
故选D.
精英家教网
点评:本题主要考查了分段函数的值域的求解,解题中如能借助于函数的图象,可以简化运算,要注意数形结合及分类讨论思想在解题中的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+4xx≥0
4x-x2x<0.
若f(2-a2)>f(a),则实数a的取值范围是(  )
A、(-∞,-1)∪(2,+∞)
B、(-1,2)
C、(-2,1)
D、(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+1x-1
,其图象在点(0,-1)处的切线为l.
(I)求l的方程;
(II)求与l平行的切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
x2+1
 
 
 
 
 
 
,(x≥0)
-x+
1
 
 
 
 
 
,(x<0)
,则f(-1)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知函数f(x)=
-x2+4x-10(x≤2)
log3(x-1)-6(x>2)
,若f(6-a2)>f(5a),则实数a的取值范围是
(-6,1)
(-6,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•重庆一模)设函数f(x)=-x2+2ax+m,g(x)=
ax

(I)若函数f(x),g(x)在[1,2]上都是减函数,求实数a的取值范围;
(II)当a=1时,设函数h(x)=f(x)g(x),若h(x)在(0,+∞)内的最大值为-4,求实数m的值.

查看答案和解析>>

同步练习册答案