精英家教网 > 高中数学 > 题目详情
设a为实数,函数f(x)=x3-x2-x+a.
(Ⅰ)求f(x)的极值;
(Ⅱ)当a在什么范围内取值时,曲线y=f(x)与x轴仅有一个交点.
分析:(1)函数连续可导,只需讨论满足f′(x)=0的点附近的导数的符号的变化情况,来确定极值点,求出极值.
(2)曲线f(x)与x轴仅有一个交点,可转化成f(x)极大值<0或f(x)极小值>0即可.
解答:解:(1)令f'(x)=3x2-2x-1=0得:x1=-
1
3
x2=1

又∵当x∈(-∞,-
1
3
)时,f'(x)>0;
当x∈(-
1
3
,1)时,f'(x)<0;
当x∈(1,+∞)时,f'(x)>0;
x1=-
1
3
与x2=(1分)别为f(x)的极大值与极小值点.
∴f(x)极大值=f(-
1
3
)=a+
5
27
;f(x)极小值=a-1
(2)∵f(x)在(-∞,-
1
3
)上单调递增,
∴当x→-∞时,f(x)→-∞;
又f(x)在(1,+∞)单调递增,当x→+∞时,f(x)→+∞
∴当f(x)极大值<0或f(x)极小值>0时,曲线f(x)与x轴仅有一个交点.
a+
5
27
<0
或a-1>0,
∴a∈(-∞,-
5
27
)∪(1,+∞)
点评:本题主要考查了利用导数研究函数的极值,以及函数的单调性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=x3-ax2+(a2-1)x在(-∞,0)和(1,+∞)都是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=x2-|x-a|+1,x∈R.
(1)若f(x)是偶函数,试求a的值;
(2)在(1)的条件下,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=2x2+(x-a)|x-a|
(1)求f(a+1);
(2)若a=3,用分段函数的形式表示f(x),并求出f(x)的最小值;
(3)求f(x)的最小值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=ex-2x+2a,x∈R.求f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=x3+ax2+(a-2)x的导函数是f'(x)是偶函数,则曲线y=f(x)在原点处的切线方程为
y=-2x
y=-2x

查看答案和解析>>

同步练习册答案