精英家教网 > 高中数学 > 题目详情

(12分)如图,已知圆C:,定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足=,?=0,点N的轨迹为曲线E.

(Ⅰ)求曲线E的方程;

(Ⅱ)若过定点A(1,0)的直线交曲线E于不同的两点G、H,

且满足∠GOH为锐角,求直线的斜率k的取值范围.

解析:(Ⅰ)依题PN为AM的中垂线

……………………………………2分

又C(-1,0),A(1,0)

所以N的轨迹E为椭圆,C、A为其焦点………………………………4分

a=,c=1,所以为所求…………………………………5分

(Ⅱ)设直线的方程为:y=k(x-1)代入椭圆方程:x2+2y2=2得

(1+2k2)x2-4k2x+2k2-2=0………………(1)

设G(x1,y1)、H(x2,y2),则x1,x2是(1)的两个根.

……………………………………7分

依题

………………………………………9分

解得:……………………………………………………12分

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年贵州省遵义四中高二下学期期末考试文科数学 题型:解答题

(本小题满分12分)如图,已知正方形ABCD和矩形ACEF所在平面互相垂直,
AB=,AF=1,M是线段EF的中点。
(Ⅰ)求证:AM∥平面BDE;
(Ⅱ) 求二面角A-DF-B的大小.

查看答案和解析>>

科目:高中数学 来源:2012届云南省昆明一中高三上学期第一次月考试题文科数学 题型:解答题

(本小题满分12分)
如图,已知四棱锥的底面是正方形,,且,点分别在侧棱上,且

(Ⅰ)求证:
(Ⅱ)若,求平面与平面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年云南省高三上学期第一次月考试题文科数学 题型:解答题

(本小题满分12分)

如图,已知四棱锥的底面是正方形,,且,点分别在侧棱上,且

(Ⅰ)求证:

(Ⅱ)若,求平面与平面所成二面角的余弦值.

 

查看答案和解析>>

科目:高中数学 来源:2011年浙江省杭州市高二上学期期末考试数学理卷 题型:解答题

(本小题满分12分)

如图,已知中,平面

分别为上的动点.

(1)若,求证:平面平面

(2)若,求平面与平面所成的锐二面角的大小.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年贵州省五校高三第四次联考数学理卷 题型:解答题

(本小题满分12分)

如图,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90O,∠EAC=600ABACAE

(1)在直线BC上是否存在一点P,使得DP∥平面EAB?请证明你的结论;

(2)求平面EBD与平面ABC所成的锐二面角的大小。

 

查看答案和解析>>

同步练习册答案