精英家教网 > 高中数学 > 题目详情
已知函数f(x)与g(x)的定义域均为{1,2,3},且满足f(1)=f(3)=1,f(2)=3,g(x)+x=4,则满足f[g(x)]>g[f(x)]的x的值
2
2
分析:由g(x)+x=4,分别令x=1,2,3,求出g(1),g(2)及g(3)的值,再由f(1)=f(3)=1,f(2)=3,可分别求出g[f(1)],g[f(2)]及g[f(3)]的值,以及f[g(1)],f[g(2)]及f[g(3)]的值,比较f[g(x)]与g[f(x)]的大小即可得到满足题意x的值.
解答:解:由g(x)+x=4,
令x=1,得到g(1)=3,令x=2,得到g(2)=2,令x=3,得到g(3)=1,
又f(1)=f(3)=1,f(2)=3
∴g[f(1)]=g(1)=3,g[f(2)]=g(3)=1,g[f(3)]=g(1)=3,
∴f[g(1)]=f(3)=1,f[g(2)]=f(2)=3,f[g(3)]=f(1)=1,
则x=2时,f[g(x)]>g[f(x)].
故答案为:2
点评:此题考查了其他不等式的解法,涉及的知识有函数的值,根据题意g(x)+x=4,得出g(1),g(2)及g(3)的值是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)与g(x)的定义域均为非负实数集,对任意x≥0,规定f(x)*g(x)=minf(x),g(x),若f(x)=3-x,g(x)=
2x+5
,则f(x)*g(x)的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知函数f(x)与g(x)是定义在R上的两个可导函数,若f(x)、g(x)满足f′(x)=g′(x),则下列说法正确的是
②④
(填序号).
①f(x)=g(x);                   ②f(x)-g(x)为常数函数;
③f(x)+g(x)为常数函数;         ④f(x)和g(x)的图象没有公共点或重合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)与g(x)的定义域为R,有下列5个命题:
①若f(x-2)=f(2-x),则f(x)的图象自身关于直线y轴对称;
②y=f(x-2)与y=f(2-x)的图象关于直线x=2对称;
③函数y=f(x+2)与y=f(2-x)的图象关于y轴对称;
④f(x)为奇函数,且f(x)图象关于直线x=
12
对称,则f(x)周期为2;
⑤f(x)为偶函数,g(x)为奇函数,且g(x)=f(x-1),则f(x)周期为2.
其中正确命题的序号为
①②③④
①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)与g(x)在R上有定义,且对任意的实数x,y,有f(x-y)=f(x)g(y)-g(x)f(y),f(1)=f(2)≠0,则g(1)+g(-1)=
1
1

查看答案和解析>>

同步练习册答案