精英家教网 > 高中数学 > 题目详情
求证:双曲线xy=k(k≠0)上任一点处的切线与两坐标轴围成的三角形面积为常数.并说明你的证明中的主要步骤(三步).
证明:设曲线xy=k(k≠0)上任意一点的坐标是P(x0,y0),
由题意可得:xy=k可以变形为:y=
k
x

对函数y=
k
x
求导数可得 y′=-
k
x2

所以切线的方程是 y-y0=-
k
x20
(x-x0)

因为x0y0=k,可以得出切线在x轴与y轴的截距分别是x截距=x0+-
x20
y0
a2
=2x0

y截距=y0+
k
x0
=
x0y0+k
x0
=
2k
x0

所以根据三角形的面积公式可得:所求三角形的面积为2k,
所以双曲线xy=k(k≠0)上任一点处的切线与两坐标轴围成的三角形面积为常数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求证:双曲线xy=k(k≠0)上任一点处的切线与两坐标轴围成的三角形面积为常数.并说明你的证明中的主要步骤(三步).

查看答案和解析>>

科目:高中数学 来源:2005-2006学年广东省珠海市高二质量检测数学模拟试卷(理科)(解析版) 题型:解答题

求证:双曲线xy=k(k≠0)上任一点处的切线与两坐标轴围成的三角形面积为常数.并说明你的证明中的主要步骤(三步).

查看答案和解析>>

科目:高中数学 来源:2005-2006学年广东省珠海市高二质量检测数学模拟试卷(文科)(解析版) 题型:解答题

求证:双曲线xy=k(k≠0)上任一点处的切线与两坐标轴围成的三角形面积为常数.并说明你的证明中的主要步骤(三步).

查看答案和解析>>

同步练习册答案