精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2cos2x+2sinxcosx+a,且当x∈[0,]时,f(x)的最小值为2.

(1)求a的值,并求f(x)的单调递增区间;

(2)先将函数y=f(x)的图象上的点纵坐标不变,横坐标缩小到原来的,再将所得图象向右平移个单位,得到函数y=g(x)的图象,求方程g(x)=4在区间[0,]上所有根之和.

【答案】1;(2.

【解析】

试题(1)先利用配角公式将函数的解析式化成的形式,再利用函数的最值求出值,再利用整体思想求出函数的单调区间;(2)先利用三角函数的图象变换规律得到函数的图象和解析式,再利用函数的对称性求解.

试题解析:(1)函数

所以

,得

由题意得,,得

所以函数的单调递增区间为

2)由题意得

又由

解得

因为,所以,故所有根之和为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:

未使用节水龙头50天的日用水量频数分布表

日用

水量

频数

1

3

2

4

9

26

5

使用了节水龙头50天的日用水量频数分布表

日用

水量

频数

1

5

13

10

16

5

(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:

2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;

3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一辆汽车前往目的地需要经过个有红绿灯的路口.汽车在每个路口遇到绿灯的概率为(可以正常通过),遇到红灯的概率为(必须停车).假设汽车只有遇到红灯或到达目的地才停止前进,用随机变量表示前往目的地途中遇到红灯数和绿灯数之差的绝对值.

1)求汽车在第个路口首次停车的概率;

2)求的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).M是曲线上的动点,将线段OM绕O点顺时针旋转得到线段ON,设点N的轨迹为曲线.以坐标原点O为极点,轴正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2)在(1)的条件下,若射线与曲线分别交于A, B两点(除极点外),且有定点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求曲线y=fx)在点处的切线与坐标轴围成的三角形的面积;

2)求过点作曲线y=fx)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,x∈(b﹣3,2b)是奇函数,

(1)求a,b的值;

(2)若f(x)是区间(b﹣3,2b)上的减函数且f(m﹣1)+f(2m+1)>0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合A{x|2≤x≤5}B{x|m1≤x≤2m1}

(1)BA,求实数m的取值范围;

(2)x∈Z时,求A的非空真子集个数;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两圆C1x2y22x6y10C2x2y210x12y450.

(1)求证:圆C1和圆C2相交;

(2)求圆C1和圆C2的公共弦所在直线的方程和公共弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:

(1)求分数在[120,130)内的频率;

(2)估计本次考试的中位数;

(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.

查看答案和解析>>

同步练习册答案