精英家教网 > 高中数学 > 题目详情
不等式
x+1
2-x
≤0
的解集为(  )
分析:先将分式不等式转化为一元二次不等式,再求出相应的解集即可.
解答:解:原不等式等价于:(x+1)(2-x)≤0且2-x≠0
∴x≤-1,或x>2
∴原不等式的解集为{x|x≤-1或x>2}
故选
点评:本题考查的重点是分式不等式,解题的关键是转化为一元二次不等式,一定要注意分母不等于0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若整数m满足不等式x-
1
2
≤m<x+
1
2
,x∈R
,则称m为x的“亲密整数”,记作{x},即{x}=m,已知函数f(x)x-{x}.给出以下四个命题:
①函数y=f(x),x∈R是周期函数且其最小正周期为1;
②函数y=f(x),x∈R的图象关于点(k,0),k∈Z中心对称;
③函数y=f(x),x∈R在[-
1
2
1
2
]
上单调递增;
④方程f(x)=
1
2
sin(π•x)
在[-2,2]上共有7个不相等的实数根.
其中正确命题的序号是
①④
①④
.(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•丹东模拟)已知a>0,设函数f(x)=alnx-2
a
•x+2a
g(x)=
1
2
(x-2
a
)2

(Ⅰ)求函数h(x)=f(x)-g(x)的最大值;
(Ⅱ)若e是自然对数的底数,当a=e时,是否存在常数k、b,使得不等式f(x)≤kx+b≤g(x)对于任意的正实数x都成立?若存在,求出k、b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•绵阳二模)不等式
x+12-x
≥0的解集为
[-1,2)
[-1,2)
.(用区间表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•福建)选修4-5:不等式选讲
设不等式|x-2|<a(a∈N*)的解集为A,且
3
2
∈A,
1
2
∉A

(Ⅰ)求a的值
(Ⅱ)求函数f(x)=|x+a|+|x-2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A是由具备下列性质的函数f(x)组成的:
①函数f(x)的定义域是[0,+∞);
②函数f(x)的值域是[-2,4);
③函数f(x)在[0,+∞)上是增函数,分别探究下列小题:
(1)判断函数f1(x)=
x
-2(x≥0)及f2(x)=4-6•(
1
2
x(x≥0)是否属于集合A?并简要说明理由;
(2)对于(1)中你认为属于集合A的函数f(x),不等式f(x)+f(x+2)<2f(x+1)是否对于任意的x≥0恒成立?若不成立,为什么?若成立,请说明你的结论.
(3)g(x)=x+2a f1(x)求g(x)的最小值用a表示.

查看答案和解析>>

同步练习册答案