精英家教网 > 高中数学 > 题目详情
已知椭圆过点(0,1),且离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)A,B为椭圆C的左右顶点,直线与x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,|DE|•|DF|恒为定值.
【答案】分析:(Ⅰ)由题意可知:b=1,因为e=,且a2=b2+c2,可得a的值,进而求出椭圆的方程.
(Ⅱ)由题意可得:A(-2,0),B(2,0).设P(x,y),由题意可得:-2<x<2,分别写出直线AP与直线BP的方程,再求出E、F两点的纵坐标,即可求出|DE|•|DF|的表达式,然后利用点P在椭圆上即可得到|DE|•|DF|为定值1.
解答:解:(Ⅰ)由题意可知,b=1,
又因为e=,且a2=b2+c2
解得a=2,
所以椭圆的方程为
(Ⅱ)由题意可得:A(-2,0),B(2,0).设P(x,y),由题意可得:-2<x<2,
所以直线AP的方程为,令,则

同理:直线BP的方程为,令,则

所以=
,即4y2=4-x2,代入上式,
所以|DE|•|DF|=1,
所以|DE|•|DF|为定值1.
点评:本题考查了由椭圆的性质求椭圆的方程,以及直线的方程与直线与直线的交点问题,要求有较高的计算能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆数学公式过点(0,1),且离心率为数学公式
(Ⅰ)求椭圆C的方程;
(Ⅱ)A,B为椭圆C的左右顶点,直线数学公式与x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,|DE|•|DF|恒为定值.

查看答案和解析>>

科目:高中数学 来源:广东省月考题 题型:解答题

已知椭圆过点(0,1),且离心率为
(Ⅰ)求椭圆C的方程;
(Ⅰ)A,B为椭圆C的左右顶点,直线与x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,|DE|·|DF|恒为定值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省揭阳市建新中学高三(上)第二次段考数学试卷(文科)(解析版) 题型:解答题

已知椭圆过点(0,1),且离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)A,B为椭圆C的左右顶点,直线与x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,|DE|•|DF|恒为定值.

查看答案和解析>>

科目:高中数学 来源:2012年北京市东城区高考数学一模试卷(文科)(解析版) 题型:解答题

已知椭圆过点(0,1),且离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)A,B为椭圆C的左右顶点,直线与x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,|DE|•|DF|恒为定值.

查看答案和解析>>

同步练习册答案