精英家教网 > 高中数学 > 题目详情
8、数列1,1+2,1+2+22,1+2+22+23,…,1+2+22+…+2n-1,…的前n项和Sn>1020,那么n的最小值是
10
分析:依题意数列每一项都是一个等比数列的和,进而得出数列的通项公式和前n项和公式,进而求出Sn,根据Sn>1020求出n的范围.
解答:解:依题意数列每一项都是一个等比数列的和
∴数列通项公式an=2n-1
∴Sn=2+22+23…2n-n=2n+1-2-n
∵Sn>1020,210=1024,210-2-10=1012<1020
∴n≥10
故答案为10
点评:本题主要考查了数列的求和问题.解决此类问题要善于从数列的每一项中找到规律.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、某资料室在计算机使用中,如表所示,编码以一定规则排列,且从左至右以及从上到下都是无限的.此表中,主对角线上数列1,2,5,10,17,…的通项公式为
an=n2-2n+2(n∈N+
;编码100共出现
6
次.
1 1 1 1 1 1
1 2 3 4 5 6
1 3 5 7 9 11
1 4 7 10 13 16
1 5 9 13 17 21
1 6 11 16 21 26

查看答案和解析>>

科目:高中数学 来源: 题型:

数列1,1+2,1+2+2,1+2+22+23,…,1+2+22+…+2n-1,…的前n项和是Sn,那么S9的值是
1013
1013

查看答案和解析>>

科目:高中数学 来源: 题型:

数列1,1+2,1+2+22,…,1+2+22+…+2n-1,…的前99项和为(  )

查看答案和解析>>

科目:高中数学 来源:2010年河南省周口市高二上学期期中考试数学卷 题型:单选题

数列1、1+2、1+2+22、…、1+2+22+…+2n-1…的前n项和为                  ( )

A.2n—n—1B.2n+1—n—2C.2nD.2n+1—n

查看答案和解析>>

同步练习册答案