精英家教网 > 高中数学 > 题目详情
方程组
2x-y+4=0
x+2y-3=0
的解是(  )
A、{1,-2}
B、(-1,2)
C、{(-1,2)}
D、{x=1,y=-2}
考点:两条直线的交点坐标
专题:直线与圆
分析:直接通过方程组求解即可.
解答: 解:方程组
2x-y+4=0
x+2y-3=0
的解为:
x=-1
y=2
,即{(-1,2)}.
故选:C.
点评:本题考查两条直线的交点坐标的求法,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
π
2
<α<π,tanα-cotα=-
8
3

(1)求tanα的值;
(2)求sin(2α-
π
2
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=lg(4-x2),则f(
x
2
)+f(
2
x
)的定义域是(  )
A、(-1,1)
B、(-4,4)
C、(-4,-1)∪(1,4)
D、(-2,-1)∪(1.2)

查看答案和解析>>

科目:高中数学 来源: 题型:

在复平面内与复数z=
5i
1+2i
所对应的点关于虚轴对称的点为A,则A对应的复数为(  )
A、1+2iB、1-2i
C、-2+iD、2+i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|y=lg(1-x)},集合B={y|y=x+
1
x
,x≠0},则A∩B=(  )
A、空集∅
B、{x|x<1且x≠0}
C、(-∞,-2]
D、(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

集合{x∈N|x-3<2},用列举法表示是(  )
A、{0,1,2,3,4}
B、{1,2,3,4}
C、{0,1,2,3,4,5}
D、{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD中,底面ABCD是菱形,其对角线的交点为O,且SA=SC,SA⊥BD.
(1)求证:SO⊥平面ABCD;
(2)设BAD=60°,AB=SD=2,P是侧棱SD上的一点,且SB∥平面APC,求三棱锥A-PCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:
x=1+t
y=
3
t
(t为参数),曲线C1
x=2cosθ
y=2sinθ
(θ为参数).
(1)设l与C1相交于A、B两点,求|AB|的值;
(2)若把曲线C1上各点的横坐标压缩为原来的
1
4
,纵坐标压缩为原来的
3
4
,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a2+b2=4c2(c≠0),则圆O:x2+y2=1的圆心到直线l:ax+by+c=0的距离为
 

查看答案和解析>>

同步练习册答案