![]()
| (1)解:在矩形ABCD中,AB⊥AQ,DC⊥DQ, 所以,在折起后,有PB⊥PQ,APC⊥PQ, 所以∠BPC就是所求的二面角的平面角, 因为 所以 即△PBC是直角三角形,所以 ∠BPC=90°。 (2)证明:由已知可得△BCQ、△BCP都是等腰三角形, 取BC的中点M,连结PM、QM, 则有PM⊥BC,QM⊥BC, 因为PM∩QM=M, 所以BC⊥平面PQM, 因为 所以PQ⊥BC。 (3)由(2)知BC⊥平面PQM,而 所以平面PQM⊥平面BCQ, 又平面PQM∩平面BCQ=QM, 所以,作PN⊥QM,有PN⊥平面BCQ, 所以,QN是PQ在平面BCQ内的射影, 所以,∠PQN就是所求的角, 在等腰△BCQ中, 在等腰△BCP中,易得PM=1, 所以△PQM是等腰直角三角形,于是∠PQN=∠PQM=45°。 |
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
(09年山东质检)(12分)
如图1,矩形ABCD中,AB=2AD=2a,E为DC的中点,现将△ADE沿AE折起,使平面ADE⊥平面ABCE,如图2.
(I)求二面角A―BC―D的正切值;
(Ⅱ)求证:AD⊥平面BDE.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com