精英家教网 > 高中数学 > 题目详情

如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线L交抛物线y=2x于M(x,y),N(x,y)两点. ⑴写出直线L的方程;⑵求xx与yy的值;⑶求证:OM⊥ON

 

【答案】

⑴直线L方程为y=k(x-2)

⑵xx=4,yy=-4

(3)根据已知中直线的方程意义抛物线的方程联立方程组,结合斜率公式来表示求证。

【解析】

试题分析:解:

(Ⅰ)解:直线l过点P(2,0)且斜率为k,故可直接写出直线l的方程为y=k(x-2) (k≠0)①

(Ⅱ)解:由①及y2=2x消去y代入可得k2x2-2(k2+1)x+4k2=0.②则可以分析得:点M,N的横坐标x1与x2是②的两个根,由韦达定理得x1x2由韦达定理得x1x2= =4.又由y12=2x1,y22=2x2得到(y1y22=4x1x2=4×4=16,又注意到y1y2<0,所以y1y2=-4.(Ⅲ)证明:设OM,ON的斜率分别为k1,k2,则k=,k=.相乘得k k==-1OM⊥ON所以证得:OM⊥ON.

考点:直线与抛物线的位置关系

点评:主要是考查了抛物线的方程以及性质和直线与抛物线的位置关系,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,O为坐标原点,在y轴上截距为2且斜率为k(k<0)的直线l与抛物线y2=2x交于M、N两点
(1)求抛物线的焦点F的坐标;
(2)若
OM
ON
=0,求直线l的方程;
(3)若点M、N将抛物线分成三段,在含有坐标原点的那一段上求一点P,使得△PMN的面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网函数y=sinπx的部分图象如图所示,O为坐标原点,P是图象的最高点,A、B分别是图象与x轴的两交点,则tan∠APB等于(  )

查看答案和解析>>

科目:高中数学 来源:天骄之路中学系列 读想用 高二数学(上) 题型:044

如图所示,O为坐标原点,直线l在x轴和y轴上的截距分别是a和b,且交抛物线y2=2px(p>0)于M(x1,y1)、N(x2,y2)两点.

(1)写出直线l的截距式方程;

(2)证明:

(3)当a=2p时,求∠MON的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,O为坐标原点,在y轴上截距为2且斜率为k(k<0)的直线l与抛物线y2=2x交于M、N两点
(1)求抛物线的焦点F的坐标;
(2)若数学公式数学公式=0,求直线l的方程;
(3)若点M、N将抛物线分成三段,在含有坐标原点的那一段上求一点P,使得△PMN的面积最大.

查看答案和解析>>

同步练习册答案