精英家教网 > 高中数学 > 题目详情
精英家教网如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=a,点M在线段EF上.
(1)求证:BC⊥平面ACFE;
(2)当EM为何值时,AM∥平面BDF?写出结论,并加以证明.
(3)当EM为何值时,AM⊥BE?写出结论,并加以证明.
分析:(1)根据线面垂直的判定定理,即可证明:BC⊥平面ACFE;
(2)根据线面平行的判定定理,确定EM的长度,然后根据AM∥平面BDF的判定定理即可得到结论.
(3)要证明AM⊥BE,则只需证明AM⊥平面BCE即可得到结论.
解答:(1)证明:在梯形ABCD中,∵AB∥CD,AD=DC=CB=a,∠ABC=60°,
∴四边形ABCD是等腰梯形,精英家教网
且∠DCA=∠DAC=30°,∠DCB=120°,
∴∠ACB=∠DCB-∠DCA=90°,
∴AC⊥BC
又∵平面ACFE⊥平面ABCD,交线为AC,
∴BC⊥平面ACFE
(2)当EM=
3
3
a
时,AM∥平面BDF,
在梯形ABCD中,设AC∩BD=N,连接FN,则CN:NA=1:2,
EM=
3
3
a
、而EF=AC=
3
a

∴EM:MF=1:2,
MF
.
.
AN
,∴四边形ANFM是平行四边形,∴AM∥NF
又∵NF?平面BDF,AM?平面BDF∴AM∥平面BDF,
(3)连结CE,由1)知BC⊥平面ACFE,
∴BC⊥AM
当AM⊥CE时△AEM∽△CAE有
AC
AE
=
AE
EM
3
a
a
=
a
EM
EM=
3
3
a

∴当EM=
3
3
a时AM⊥CE,即AM⊥平面BCE,也即AM⊥BE.
点评:本题主要考查空间直线和平面平行或垂直的位置关系的判断,要求熟练掌握常用的判定定理和性质定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,.∠ABC=60°,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=a,点M在线段EF上.
(1)求证:BC⊥平面ACFE;
(2)当EM为何值时,AM∥平面BDF?证明你的结论;
(3)求二面角B-EF-D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(Ⅰ)求证:BC⊥平面ACFE;
(Ⅱ)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,BD与AC相交于O,过O的直线分别交AB、CD于E、F,且EF∥BC,若AD=12,BC=20,则EF=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在梯形ABCD中,对角线AC和BD交于点O,E、F分别是AC和BD的中点,分别写出
(1)图中与
EF
CO
共线的向量;
(2)与
EA
相等的向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在梯形△ABCD中,AB∥CD,AD=DC-=CB=1,么ABC-60.,四边形ACFE为矩形,平面ACFE上平面ABCD,CF=1.
(I)求证:BC⊥平面ACFE;
(II)若M为线段EF的中点,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),求cosθ.

查看答案和解析>>

同步练习册答案