精英家教网 > 高中数学 > 题目详情
7.(1)用辗转相除法求117与182的最大公约数,并用更相减损术检验.
(2)用秦九韶算法求多项式f(x)=1-9x+8x2-4x4+5x5+3x6在x=-1的值?

分析 (1)用较大的数字除以较小的数字,得到商和余数,然后再用上一式中的除数和得到的余数中较大的除以较小的,以此类推,当整除时,就得到要求的最大公约数.
(2)由秦九韶算法可得f(x)=1-9x+8x2-4x4+5x5+3x6=((((3x+5)x-4)x)x+8)x-9)x+1,即可得出f(-1).

解答 解:(1)∵182=1×117+65,
117=1×65+52,
65=1×52+13,
52=3×13,
∴117与182的最大公约数为13,
检验:182-117=65,
117-65=52,
65-52=13,
52-13=39,
39-13=26,
26-13=13,
经检验:117与182的最大公约数为13.
(2)f(x)=1-9x+8x2-4x4+5x5+3x6=((((3x+5)x-4)x)x+8)x-9)x+1,
v0=3,v1=-3+5=2,v2=-2-4=-6,v3=6,v4=-6+8=2,
v5=-2-9=-11,v6=11+1=12.
∴f(-1)=12.

点评 本题考查用辗转相除法求两个数的最大公约数,考查了秦九韶算法,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知F1,F2为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,以F1F2为直径的圆与双曲线右支的一个交点为P,PF1与双曲线相交于点Q,且|PQ|=2|QF1|,则该双曲线的离心率为 (  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}为等差数列,数列{bn}为等比数列,a1=1,b1=8,a2+b2=18,a3+b3=35,数列{an}的前n项和为Sn
(1)求数列{an}和{bn}的通项公式;
(2)数列{cn}满足cn=$\frac{{a}_{n+2}}{{b}_{n}{S}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等比数列{an}的前n项和为Sn,若S3=7,S6=63,则数列{nan}的前n项和为(  )
A.-3+(n+1)×2nB.3+(n+1)×2nC.1+(n+1)×2nD.1+(n-1)×2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知正项数列{an},$\frac{n}{{a}_{1}+2{a}_{2}+3{a}_{3}+…+n{a}_{n}}$=$\frac{2}{n+2}$(n∈N*),求数列{an}的通项an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第6个个体的编号为(  )
78166572080263140702436911280598
32049234493582003623486969387481
A.11B.02C.05D.04

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{ax}{{x}^{2}+1}$+a,g(x)=aln x-x(a≠0).
(Ⅰ)求函数f (x)的单调区间;
(Ⅱ)证明:当a>0时,对于任意x1,x2∈(0,e],总有g(x1)<f (x2)成立,其中e=2.71828…是自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)是定义在实数集R上的不恒为零的偶函数,且xf(x+1)=(x+1)f(x)对任意实数x恒成立,则$f[f(\frac{5}{2})]$的值是(  )
A.0B.$\frac{1}{2}$C.1D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知0≤φ<π,函数$f(x)=\frac{{\sqrt{3}}}{2}cos(2x+φ)+{sin^2}x$.
(Ⅰ)若$φ=\frac{π}{6}$,求f(x)的单调递增区间;
(Ⅱ)若f(x)的最大值是$\frac{3}{2}$,求φ的值.

查看答案和解析>>

同步练习册答案