精英家教网 > 高中数学 > 题目详情

函数f(x)=2sin(ωx+φ)的图象,其部分图象如图所示,则f(0)=________.


分析:利用函数的图象求出函数的周期,求出ω,通过函数函数值为0,求出?,得到函数的解析式,然后求出f(0)的值.
解答:由图象可知,所以T=2π,
所以,所以ω=1,即函数为f(x)=2sin(x+),
由五点对应法可知,当时,有,所以
所以
所以
故答案为:
点评:本题考查三角函数的解析式的求法,三角函数的图象的应用,考查视图能力与计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(x+
π
3
)-2sinx,x∈[-
π
2
,0].
(Ⅰ)若cosx=
3
3
,求函数f(x)的值;
(Ⅱ)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(2x+
π
6
).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在区间[-
π
6
π
4
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2sin(
x
3
+
π
6
)的一个对称中心是
(-
π
2
,0)(答案不唯一)
(-
π
2
,0)(答案不唯一)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的函数f(x)=
2
sin(2x+φ)(-π<φ<0),f(x)是偶函数
(Ⅰ)求φ的值;
(Ⅱ)求使f(x)>1成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx-
π
6
),(ω>0,x∈R)的最小正周期为2π.
(1)求f(0)的值;
(2)若cosθ=-
3
5
,θ∈(
π
2
,π),求f(θ+
π
3
).

查看答案和解析>>

同步练习册答案