精英家教网 > 高中数学 > 题目详情

在定义域内>0恒成立是可导函数f(x)单调递增的(________)条件.

[  ]

A.必要不充分
B.充分不必要
C.充分且必要
D.即不充分也不必要
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-ax+a(x∈R)同时满足:①不等式f(x)≤0的解集有且只有一个元素;②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.设数列{an}的前n项和Sn=f(n).
(1)求f(x)的解析式;
(2)求数列{an}的通项公式;
(3)设bn=(
3
)an+5
cn=
6bn
bn+1
+
1
bn
-
1
bn+1
,{cn}前n项和为Tn,Tn-n>m对(n∈N*,n≥2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+
b
x
(a,b∈R),若f(x)在点(1,f(x))处的切线斜率为1.
(Ⅰ)用a表示b;
(Ⅱ)设g(x)=lnx-f(x),若g(x)≤-1对定义域内的x恒成立,
(ⅰ)求实数a的取值范围;
(ⅱ)对任意的θ∈[0,
π
2
),证明:g(1-sinθ)≤g(1+sinθ).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ln(1+x)-
14
x2 是定义在[0,2]上的函数
(1)求函数f(x)的单调区间
(2)若f(x)≥c对定义域内的x恒成立,求c的取值范围..

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•安徽模拟)定义:对于函数f(x),x∈M⊆R,若f(x)<f'(x)对定义域内的x恒成立,则称函数f(x)为?函数.
(Ⅰ)证明:函数f(x)=ex1nx为?函数.
(Ⅱ)对于定义域为(0,+∞)的?函数f(x),求证:对于定义域内的任意正数x1,x2,…,xn,均在f(1n(x1+x2+…+xn))>f(1nx1)+f(1nx2).+…+f(1nxn

查看答案和解析>>

同步练习册答案