(本小题满分13分)如图甲,直角梯形中,,,点、分别在,上,且,,,,现将梯形沿折起,使平面与平面垂直(如图乙).
(Ⅰ)求证:平面;
(Ⅱ)当的长为何值时,
二面角的大小为?
(Ⅰ) 见解析 (Ⅱ)
法一:(Ⅰ)MB//NC,MB平面DNC,NC平面DNC,
MB//平面DNC.
同理MA//平面DNC,又MAMB=M, 且MA,MB平面MAB.
. (6分)
(Ⅱ)过N作NH交BC延长线于H,连HN,
平面AMND平面MNCB,DNMN,
DN平面MBCN,从而,
为二面角D-BC-N的平面角. (9分)
由MB=4,BC=2,知,
. (10分)
由条件知: (13分)
解法二:如图,以点N为坐标原点,以NM,NC,ND所在直线分别作为轴,轴和轴,建立空间直角坐标系易得NC=3,MN=,
设,则.
(I).
,
∵,
∴与平面共面,又,. (6分)
(II)设平面DBC的法向量,
则,令,则,
∴. (8分)又平面NBC的法向量. (9分)
即: 又即 (13分)
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)求函数的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数在区间上的图象.
(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱的所有棱长都为2,为的中点。
(Ⅰ)求证:∥平面;
(Ⅱ)求异面直线与所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知为锐角,且,函数,数列{}的首项.
(1) 求函数的表达式;
(2)在中,若A=2,,BC=2,求的面积
(3) 求数列的前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com