精英家教网 > 高中数学 > 题目详情

已知一个圆C和轴相切,圆心在直线上,且在直线上截得的弦长为,求圆C的方程.

 

【答案】

【解析】因为圆心在直线上,可设圆心坐标为,然后再根据圆C和轴相切可得,直线上截得的弦长为利用弦长公式可得r与t的另一个关系式,两式联立可求出r,t的值,从而得到圆C的方程.

解:∵圆心在直线上,∴设圆心C的坐标为

 ∵圆C与轴相切, ∴圆的半径为

设圆心到的距离为,则

又∵圆C被直线上截得的弦长为,

∴由圆的几何性质得:,解得

∴圆心为,

∴圆C的方程为:

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的某个焦点为F,双曲线G:
x2
a2
-
y2
b2
=1
(a,b>0)的某个焦点为F.
(1)请在
 
上补充条件,使得椭圆的方程为
x2
3
+y2=1
;友情提示:不可以补充形如a=
3
,b=1
之类的条件.
(2)命题一:“已知抛物线y2=2px(p>0)的焦点为F,定点P(m,n)满足n2-2pm>0,以PF为直径的圆交y轴于A、B,则直线PA、PB与抛物线相切”.命题中涉及了这么几个要素:对于任意抛物线P(x,y),定点P,以PF为直径的圆交F(0,1)轴于A、B,PA、PB与抛物线相切.试类比上述命题分别写出一个关于椭圆C和双曲线G的类似正确的命题;
(3)证明命题一的正确性.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知圆心坐标为M(
3
,1)
的⊙M与x轴及直线y=
3
x
均相切,切点分别为A、B,另一个圆⊙N与⊙M、x轴及直线y=
3
x
均相切,切点分别为C、D.
(1)求⊙M和⊙N的方程;
(2)过点B作直线MN的平行线l,求直线l被⊙N截得的弦的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-m)2+y2=5(m<3)过点A(3,1),且过点P(4,4)的直线PF与圆C相切并和x轴的负半轴相交于点F.
(1)求切线PF的方程;
(2)若抛物线E的焦点为F,顶点在原点,求抛物线E的方程.
(3)若Q为抛物线E上的一个动点,求
AP
AQ
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过点A(0,4)的直线l与以F为焦点的抛物线C:x2=py相切于点T(-4,yo);中心在坐标原点,一个焦点为F的椭圆与直线l有公共点.
(1)求直线l的方程和焦点F的坐标;
(2)求当椭圆的离心率最大时椭圆的方程;
(3)设点M(x1,yl)是抛物线C上任意一点,D(0,-2)为定点,是否存在垂直于y轴的直线l′被以MD为直径的圆截得的弦长为定值?请说明理由.

查看答案和解析>>

同步练习册答案