精英家教网 > 高中数学 > 题目详情

设定义域为的单调递增函数满足对于任意都有,且,则              

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
OA
=(2asin2x,a)
OB
=(-1,2
3
sinxcosx+1)
,O为坐标原点,a≠0,设f(x)=
OA
OB
+b
,b>a.
(I)若a>0,写出函数y=f(x)的单调递增区间;
(II)若函数y=f(x)的定义域为[
π
2
,π]
,值域为[2,5],求实数a与b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设α∈(0,
π
2
),函数f(x)的定义域为[0,1],且f(0)=0,f(1)=1,对定义域内任意的x,y,满足f(
x+y
2
)=f(x)sinα+(1-sinα)f(y),求:
(1)f(
1
2
)及sinα的值;
(2)函数g(x)=sin(α-2x)的单调递增区间;
(3)(理)n∈N时,an=
1
2n
,求f(an),并猜测x∈[0,1]时,f(x)的表达式(不需证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•深圳二模)定义 ρ(x,y)=|ex-y|-y|x-ln y|,其中 x∈R,y∈R+
(1)设 a>0,函数 f(x)=ρ(x,a),试判断 f( x) 在定义域内零点的个数;
(2)设 0<a<b,函数 F(x)=ρ(x,a)-ρ(x,b),求 F( x) 的最小值;
(3)记(2)中的最小值为T(a,b),若{an }是各项均为正数的单调递增数列,证明:
ni=1
T(ai,ai+1 )<(an+1-a1) ln 2.

查看答案和解析>>

科目:高中数学 来源:2013届江西省高二下学期期中考试文科数学试卷(解析版) 题型:解答题

已知函数

(1)若函数在其定义域内为单调递增函数,求实数的取值范围。

(2)若函数,若在[1,e]上至少存在一个x的值使成立,求实数的取值范围。

【解析】第一问中,利用导数,因为在其定义域内的单调递增函数,所以 内满足恒成立,得到结论第二问中,在[1,e]上至少存在一个x的值使成立,等价于不等式 在[1,e]上有解,转换为不等式有解来解答即可。

解:(1)

因为在其定义域内的单调递增函数,

所以 内满足恒成立,即恒成立,

亦即

即可  又

当且仅当,即x=1时取等号,

在其定义域内为单调增函数的实数k的取值范围是.

(2)在[1,e]上至少存在一个x的值使成立,等价于不等式 在[1,e]上有解,设

 上的增函数,依题意需

实数k的取值范围是

 

查看答案和解析>>

同步练习册答案