精英家教网 > 高中数学 > 题目详情

【题目】下列函数在(0,+∞)上单调递增的是(
A.
B.y=(x﹣1)2
C.y=21x
D.y=lg(x+3)

【答案】D
【解析】解:A中, 在(﹣1,+∞)和(﹣∞,﹣1)上单调递减,故在(0,+∞)上也单调递减,排除A;
B中,y=(x﹣1)2在(﹣∞,1]上递减,在[1,+∞)上递增,故在(0,+∞)上不单调,排除B;
y=21x在R上单调递减,排除C;
y=lg(x+3)在(﹣3,+∞)上递增,故在(0,+∞)上也单调递增,
故选D.
【考点精析】认真审题,首先需要了解函数单调性的判断方法(单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+1.
(1)判断函数f(x)的奇偶性;
(2)用定义法证明函数f(x)在区间(0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是函数图象上的点,是双曲线在第四象限这一分支上的动点,过点作直线,使其与双曲线只有一个公共点,且与轴、轴分别交于点,另一条直线轴、轴分别交于点

则(1)为坐标原点,三角形的面积为__________

(2)四边形面积的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x , x∈(0,2)的值域为A,函数g(x)=log2(x﹣2a)+ (a<1)的定义域为B.
(1)求集合A,B;
(2)若BA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数g(x)=f(x)+2x,x∈R为奇函数.
(1)判断函数f(x)的奇偶性;
(2)若x>0时,f(x)=log3x,求函数g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以原点为极点, 轴正半轴为极轴建立坐标系,直线的极坐标方程为,曲线的参数方程为,( 为参数).

(Ⅰ)求直线的直角坐标方程和曲线的普通方程;

(Ⅱ)曲线轴于两点,且点 为直线上的动点,求周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,且
(1)求m的值;
(2)判断f(x)在(0,+∞)上的单调性,并给予证明;
(3)求函数f(x)在区间[﹣5,﹣1]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数中表示同一函数的是(
A.
B. ,g(x)=x+1
C.f(x)=|x|,
D. ,g(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax﹣(m﹣2)ax (a>0且a≠1)是定义域为R的奇函数.
(1)求m的值;
(2)若f(1)<0,试判断y=f(x)的单调性,并求使不等式f(x2+tx)+f(4﹣x)<0恒成立的t的取值范围;
(3)若f(1)= ,g(x)=a2x+a2x﹣2f(x),求g(x)在[1,+∞)上的最小值.

查看答案和解析>>

同步练习册答案