精英家教网 > 高中数学 > 题目详情
设F1、F2是双曲线x2-y2=4的两焦点,Q是双曲线上任意一点,从F1 引∠F1QF2平分线的垂线,垂足为P,则点P的轨迹方程是
x2+y2=4
x2+y2=4
分析:点F1关于∠F1PF2的角平分线PQ的对称点M在直线PF2的延长线上,故|F2M|=|PF1|-|PF2|=4,又OQ是△F2F1M的中位线,推出|OM|=2,由此可以求出点M的轨迹方程.
解答:解:点F1关于∠F1QF2的角平分线PQ的对称点M在直线PF2的延长线上,
故|F2M|=|QF1|-|QF2|=4,
又OP是△F2F1M的中位线,
故|OP|=2,
点P的轨迹是以原点为圆心,2为半径的圆一部分,
则点P的轨迹方程为x2+y2=4.
故答案为:x2+y2=4.
点评:本小题主要考查轨迹方程等基础知识,考查运算求解能力,考查数形结合思想,属于中档题,解答关键是应用角分线的性质解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1,F2是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的两个焦点,点P在双曲线上,若
PF1
PF2
=0 且|
PF1
||
PF2
|=2ac(c=
a2+b2
),则双曲线的离心率为(  )
A、
1+
5
2
B、
1+
3
2
C、2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宝山区模拟)双曲线C:
x2
a2
-
y2
b2
=1
上一点(2,
3
)
到左,右两焦点距离的差为2.
(1)求双曲线的方程;
(2)设F1,F2是双曲线的左右焦点,P是双曲线上的点,若|PF1|+|PF2|=6,求△PF1F2的面积;
(3)过(-2,0)作直线l交双曲线C于A,B两点,若
OP
=
OA
+
OB
,是否存在这样的直线l,使OAPB为矩形?若存在,求出l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2是双曲线x2-
y224
=1
的两个焦点,是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于
24
24

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)设F1,F2是双曲线
x2
3
-y2=1
的两个焦点,P在双曲线上,当△F1PF2的面积为2时,
PF1
PF2
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右两个焦点,若双曲线右支上存在一点P,使(
OP
+
OF2
)•
F2P
=0
(O为坐标原点),且tan∠PF2F1=2,则双曲线的离心率为(  )

查看答案和解析>>

同步练习册答案