精英家教网 > 高中数学 > 题目详情

【题目】已知{an}为等差数列,且a1+a3=8,a2+a4=12.
(1)求{an}的通项公式;
(2)设 ,求数列{bn}的前n项和.

【答案】
(1)解:设{an}为公差为d的等差数列,

由a1+a3=8,a2+a4=12,

可得2a1+2d=8,2a1+4d=12,

解得a1=d=2,

即有an=a1+(n﹣1)d=2n,n∈N*


(2)解: = = ),

数列{bn}的前n项和为 (1﹣ + +…+

= (1﹣ )=


【解析】(1)设{an}为公差为d的等差数列,由条件运用等差数列的通项公式可得方程,解方程可得首项和公差,即可得到所求通项;(2)求出 = = ),由数列的求和方法:裂项相消求和,计算即可得到所求和.
【考点精析】本题主要考查了数列的前n项和的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(x+ ),x∈R,且f( )=
(1)求A的值;
(2)若f(θ)+f(﹣θ)= ,θ∈(0, ),求f( ﹣θ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解含参数a的一元二次不等式:(a﹣2)x2+(2a﹣1)x+6>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)计算f(3),f(4),f( )及f( )的值;
(2)由(1)的结果猜想一个普遍的结论,并加以证明;
(3)求值f(1)+f(2)+…+f(2017)+f( )+f( )+…+f( ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为角A,B,C所对的边.已知sinC= sinB,c=2,cosA=
(Ⅰ)求a的值;
(Ⅱ)求sin(2A﹣ )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知样本数据a1 , a2 , a3 , a4 , a5的方差s2= (a12+a22+a32+a42+a52﹣80),则样本数据2a1+1,2a2+1,2a3+1,2a4+1,2a5+1的平均数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)将直线l: (t为参数)化为极坐标方程;
(2)设P是(1)中直线l上的动点,定点A( ),B是曲线ρ=﹣2sinθ上的动点,求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)若m=2,求f(x)的最小值;
(2)若f(x)恰有2个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断“函数 有三个零点”是否为命题.若是命题,是真命题还是假命题?说明理由.

查看答案和解析>>

同步练习册答案