精英家教网 > 高中数学 > 题目详情
如图所示,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2,CD=1,侧面PBC⊥底面ABCD,点F在线段AP上,且满足
PF
PA

(1)证明:PA⊥BD;
(2)当λ取何值时,直线DF与平面ABCD所成角为30°?
分析:(1)先证明PO⊥平面ABCD,再建立空间直角坐标系,利用向量的数量积为0,可证得PA⊥BD;
(2)利用平面ABCD的一个法向量
n
=(0,0,1),直线DF与平面ABCD所成角为30°,根据向量的夹角公式,即可求得结论.
解答:(1)证明:如图,∵△PBC是等边三角形,O是BC中点,∴PO⊥BC.
由侧面PBC⊥底面ABCD,得PO⊥平面ABCD,
以BC中点O为原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,建立如图所示的空间直角坐标系O-xyz.
∵AB=BC=PB=PC=2CD=2,
∴A(1,-2,0),B(1,0,0),D(-1,-1,0),P(0,0,
3

BD
=(-2,-1,0),
PA
=(1,-2,-
3
)

BD
PA
=-2+2+0=0

BD
PA

∴PA⊥BD;
(2)解:∵
PF
PA
PA
=(1,-2,-
3
)

PF
=(λ,-2λ,-
3
λ)

DP
=(1,1,
3
)

DF
=
DP
+
PF
=(1+λ,1-2λ,
3
-
3
λ)

∵平面ABCD的一个法向量
n
=(0,0,1),直线DF与平面ABCD所成角为30°
∴sin30°=|
DF
n
|
DF
||
n
|
|
∴4λ2-16λ+7=0
λ1=
1
2
λ2=
7
2
(舍去)
∴λ=
1
2
时,直线DF与平面ABCD所成角为30°.
点评:本题考查线线垂直,考查线面角,考查李建勇空间向量解决立体几何问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=
12
AB=1

(1)求证:面PAD⊥面PCD;
(2)求直线PC与面PAD所成角的余弦值;
(3)求AC与PB所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知四棱锥中,底面为正方形,侧面为正三角形,且平面底面中点,求证:

(1)平面;     (2)平面平面

 


查看答案和解析>>

科目:高中数学 来源:2014届辽宁瓦房店高级中学高二上期中考试理科数学试卷(解析版) 题型:解答题

(本题满分12分)如图所示,已知四棱锥S—ABCD的底面ABCD是矩形,M、N分别是CD、SC的中点,SA⊥底面ABCD,SA=AD=1,AB=.

(1)求证:MN⊥平面ABN;(2)求二面角A—BN—C的余弦值

 

查看答案和解析>>

科目:高中数学 来源:湖南省长沙市2009-2010学年度高一第二次单元考试 题型:选择题

((10分).如图所示,已知四棱锥P—ABCD,底面ABCD为菱形,PA⊥平面ABCD,

∠ABC=60°,E,F分别是BC,PC的中点.

(1)证明:AE⊥PD;

(2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,

求二面角E—AF—C的余弦值.

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案