精英家教网 > 高中数学 > 题目详情
10.已知f1(x)=sin x+cos x,记f2(x)=f1′(x),f3(x)=f2′(x),…,fn(x)=fn-1′(x)(n∈N*,n≥2),则f1($\frac{π}{2}$)+f2($\frac{π}{2}$)+…+f2017($\frac{π}{2}$)=1.

分析 根据题意,先求出f2(x)、f3(x)、f4(x),观察所求的结果,归纳其中的周期性规律,求解即可.

解答 解:根据题意,f1(x)=sin x+cos x,
f2(x)=f1′(x)=cosx-sinx,
f3(x)=(cosx-sinx)′=-sinx-cosx,
f4(x)=-cosx+sinx,
f5(x)=sinx+cosx,
以此类推,可得出fn(x)=fn+4(x)
又f1(x)+f2(x)+f3(x)+f4(x)=0,
则f1($\frac{π}{2}$)+f2($\frac{π}{2}$)+…+f2017($\frac{π}{2}$)=f1($\frac{π}{2}$)=1;
故答案为:1.

点评 本题考查导数的计算,关键是通过计算导数,发现变形的规律.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与双曲线C2:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{16}$=1有相同的渐近线,且C1的右焦点为F($\sqrt{5}$,0),则双曲线C1的方程为${x^2}-\frac{y^2}{4}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)是定义在R上的偶函数,且x∈[0,+∞)时,f′(x)<0,若不等式f(x3-x2+a)+f(-x3+x2-a)≥2f(1)对x∈[0,1]恒成立,则实数a的取值范围是(  )
A.$[-\frac{23}{27},1]$B.$[\frac{23}{27},1]$C.[1,3]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设等差数列 {an} 的前 n 项和为 Sn,已知 ${({a}_{7}-1)}^{3}+2017({a}_{7}-1)=1$,${({a}_{2011}-1)}^{3}+2017({a}_{2011}-1)=-1$,则下列结论正确的是(  )
A.S2017=2017,a2011<a7B.S2017=2017,a2017>a7
C.S2012=-2017,a2017<a7D.S2017=-2017,a2017>a7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=(x-a)2(x-b)(a,b∈R,a<b).
(1)当a=1,b=2时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3≠x1,x3≠x2.证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后构成等差数列,并求x4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{an}满足:a1=1,$2{a_{n+1}}=2{a_n}+1\;,\;n∈{N^*}$则数列{an}=(  )
A.{an}是等比数列B.{an}不是等差数列C.a2=1.5D.S5=122

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知sinx+siny=$\frac{1}{3}$,则u=sinx+cos2x的最小值是(  )
A.$-\frac{1}{9}$B.-1C.1D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.曲线y=3sin2x图象上所有点的横坐标伸长为原来的2倍,纵坐标变为原来的$\frac{1}{3}$倍,所得图象对应的解析式为(  )
A.y=9sin4xB.y=sin4xC.y=9sinxD.y=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ln(1+x)-$\frac{ax}{x+1}$(a>0).
(1)若x=1是函数f(x)的一个极值点,求a的值;
(2)若f(x)≥0在[0,+∞)上恒成立,求a的取值范围;
(3)证明:${(\frac{2017}{2016})^{2017}}$>e(e为自然对数的底数).

查看答案和解析>>

同步练习册答案