精英家教网 > 高中数学 > 题目详情
已知正四棱锥P-ABCD的底面边长为4,侧面与底面所成的二面角为60°,E、F分别是侧棱PA、PD的中点.求:
(Ⅰ)直线BE与侧棱PC所成的角的大小;
(Ⅱ)AC与截面BCFE所成的角的大小.

【答案】分析:(Ⅰ)先根据侧面与底面所成的二面角为60°可得△PMN是等边三角形;再设AC与MN的交点为O可得∠BEO是PC与BE所成的角;最后通过计算三角形的边长即可求出直线BE与侧棱PC所成的角的大小;
(Ⅱ)过O作OH⊥GN于H,先根据BC⊥MN,BC⊥PN证得BC⊥平面PMN;进而得到平面BCFE⊥平面PMN,可得OH⊥平面BCFE,进而分析出∠OCH是直线AC与平面BCFE所成的角,最后通过计算三角形的边长即可求出结论.
解答:解:(Ⅰ)分别取AD、BC中点M、N,连接PM交EF于G,连接PN、GN、MN.
则PM⊥AD,MN⊥AD.∠PMN是侧面与底面所成的二面角的平面角.
故∠PMN=60°,△PMN是等边三角形.  …(2分)
设AC与MN的交点为O,连接OE,则OE∥PC,
∠BEO是PC与BE所成的角.                            …(4分)
∵PO⊥BD,AC⊥BD,
∴BD⊥平面PAC,从而BO⊥OE,AB=4,
则OB=2,OE=
tan∠BEO==,BE与PC所成的角为arctan;  …(6分)
(Ⅱ)过O作OH⊥GN于H,连接CH.
∵BC⊥MN,BC⊥PN,MN∩PN=N,
∴BC⊥平面PMN.      …(8分)
∴平面BCFE⊥平面PMN.
∴OH⊥平面BCFE.
∠OCH是直线AC与平面BCFE所成的角.…(10分)
在Rt△OCH中,OH=MG=1,OC=2
sin∠OCH=
因此AC与平面BCFE所成的角为arcsin.…(12分)
点评:本题主要考查线面角以及线线角的求法.一般在求异面直线所成角时,常用方法是通过做平行线把异面直线所成角转化为相交直线所成角,再通过求三角形的边长进而求出对应的角即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正四棱锥P-ABCD,PA=2,AB=
2
,M是侧棱PC的中点,则异面直线PA与BM所成角为
 
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知正四棱锥P-ABCD的全面积为2,记正四棱锥的高为h.
(1)用h表示底面边长,并求正四棱锥体积V的最大值;
(2)当V取最大值时,求异面直线AB和PD所成角的大小.
(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知正四棱锥P—ABCD中,PA=2,AB=,M是侧棱PC的中点,则异面直线PA与BM所成角的大小为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正四棱锥P-ABCD的全面积为2,记正四棱锥的高为h.
(1)用h表示底面边长,并求正四棱锥体积V的最大值;
(2)当V取最大值时,求异面直线AB和PD所成角的大小.
(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源:2006-2007学年北京市海淀区高三(上)期末数学试卷(理科)(解析版) 题型:填空题

已知正四棱锥P-ABCD,PA=2,AB=,M是侧棱PC的中点,则异面直线PA与BM所成角为   

查看答案和解析>>

同步练习册答案