精英家教网 > 高中数学 > 题目详情
已知向量
m
=(
3
sin2x-1,cosx),n=(
1
2
,cosx),设函数f(x)=
m
n

(1)求函数f(x)的最小正周期及在[0,
π
2
]上的最大值;
(2)已知△ABC的角A、B、C所对的边分别为a、b、c,A、B为锐角,f(A+
π
6
)=
3
5
,f(
B
2
-
π
12
)=
10
10
,又a+b=
2
+1,求a、b、c的值.
分析:(1)根据平面向量的数量积的运算法则即可得到f(x)的解析式,再利用二倍角的余弦函数公式及两角和的正弦函数公式化为一个角的正弦函数,利用周期公式即可求出f(x)的最小正周期,由x的范围求出这个角的范围,根据正弦函数的值域即可得到f(x)的值域,进而得到f(x)的最大值;
(2)由f(A+
π
6
)=
3
5
,代入f(x)并利用诱导公式化简后,即可得到cos2A的值,然后利用二倍角的余弦函数公式即可求出sinA的值,由A为锐角,利用同角三角函数间的基本关系即可求出cosA的值,又f(
B
2
-
π
12
)=
10
10
,代入f(x)化简后即可求出sinB的值,由B的范围,利用同角三角函数间的基本关系即可求出cosB的值,由正弦定理,根据求出的sinA和sinB的值即可得到a与b的关系式,由a与b的和即可求出a与b的值,然后由sinA,cosA,sinB及cosB的值,根据诱导公式及两角和的正弦函数公式即可求出sinC的值,由b,sinB,sinC的值,利用正弦定理即可求出c的值.
解答:解:(1)f(x)=
m
• 
n
=
3
2
sin2x-
1
2
+cos2x=sin(2x+
π
6
)
,(3分)
T=
2

0≤x≤
π
2
π
6
≤2x+
π
6
6

-
1
2
≤sin(2x+
π
6
)≤1

∴f(x)max=1;(16分)
(2)∵f(A+
π
6
)=
3
5

cos2A=
3
5
⇒sin2A=
1-cos2 A
2
=
1
5

∵A为锐角,∴sinA=
5
5
cosA=
2
5
5
(7分)
f(
B
2
-
π
12
)=
10
10
⇒sinB=
10
10

∵B为锐角,∴cosB=
3
10
10
,(8分)
由正弦定理知
a
b
=
sinA
sinB
=
2
⇒a=
2
b

a+b=
2
+1⇒a=
2
,b=1(10分)
又∵sinC=sin(A+B)=sinA•cosB+cosA•sinB=
5
5
3
10
10
+
2
5
5
10
10
=
2
2

c
sinC
=
b
sinB
⇒c=
b•sinC
sinB
=
2
2
×
10
=
5
(12分)
点评:此题考查学生掌握平面向量的数量积的运算法则及正弦函数的值域,灵活运用两角和与差的正弦函数公式及正弦定理化简求值,灵活运用二倍角的余弦函数公式及同角三角函数间的基本关系化简求值,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(cosα-
2
3
,-1),
n
=(sinα,1),
m
n
为共线向量,且α∈[-π,0].
(Ⅰ)求sinα+cosα的值
(Ⅱ)求
sin2α
sinα-cosα
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,已知B=C,2b=
3
a

(1)求cosA的值;
(2)cos(2A+
π
4
)
的值.
(3)若已知向量
m
=(
3
cos
x
4
,cos
x
4
),
n
=(sin
x
4
,cos
x
4
).若
m
n
=
2+
2
4
,求sin(
6
-x)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(
3
sinx,cosx),
n
=(cosx,cosx),
p
=(2
3
,1).
(1)若
m
p
,求sinx•cosx的值;
(2)若f(x)=
m
n
,求函数f(x)在区间[0,
π
3
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(1,cosωx),
n
=(sinωx,
3
)
(ω>0),函数f(x)=
m
n
,且f(x)图象上一个最高点的坐标为(
π
12
,2)
,与之相邻的一个最低点的坐标为(
12
,-2)

(1)求f(x)的解析式;
(2)在△ABC中,a,b,c是角A、B、C所对的边,且满足a2+c2-b2=ac,求角B的大小以及f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(2cos2x,sinx),
n
=(1,2cosx).
(I)若
m
n
且0<x<π,试求x的值;
(II)设f(x)=
m
n
,试求f(x)的对称轴方程和对称中心.

查看答案和解析>>

同步练习册答案