精英家教网 > 高中数学 > 题目详情
6.已知抛物线y2=4x的焦点为F,过点(a,0)(a<0)倾斜角为$\frac{π}{6}$的直线l交抛物线C、D两点.若F在以线段CD为直径的圆的外部,则a的取值范围为(  )
A.(-3,-2$\sqrt{5}$+3)B.(-∞,-2$\sqrt{5}$+3)C.(-$\frac{1}{2}$,4-$\sqrt{17}$)D.(-∞,4-$\sqrt{17}$)

分析 设直线l的方程与抛物线方程联立,利用韦达定理及F在以线段CD为直径的圆的外部,建立不等式,即可确定a的取值范围.

解答 解:设C(x1,y1),D(x2,y2),
∵F在以线段CD为直径的圆的外部,
∴$\overrightarrow{FC}•\overrightarrow{FD}$>0,
∴(x1-1)(x2-1)+y1y2>0,
于是(x1-1)(x2-1)+y1y2=4x1x2-(a+3)(x1+x2)+3+a2>0
设l的方程为:y=$\frac{\sqrt{3}}{3}$(x-a),
代入抛物线方程,得x2-(2a+12)x+a2=0,
∴x1+x2=2a+12,x1x2=a2
∴4x1x2-(a+3)(x1+x2)+3+a2=3a2-18a-33>0,
故a>2$\sqrt{5}$+3或a<-2$\sqrt{5}$+3,
又△=(2a+12)2-4a2>0,得到a>-3.
∴-3<a<-2$\sqrt{5}$+3.
故选:A.

点评 本题考查抛物线的标准方程,考查直线与抛物线的位置关系,考查向量知识的运用,正确运用韦达定理是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知a>0且a≠1,f(x)=${a}^{x}-\frac{1}{{a}^{x}}$
(1)判断函数f(x)是否有零点,若有求出零点;
(2)判断函数f(x)的奇偶性;
(3)讨论f(x)的单调性并用单调性定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知定义在R上的函数f(x)满足①图象关于(1,0)点对称;②f(-1+x)=f(-1-x);③x∈[-1,1]时,f(x)=$\left\{\begin{array}{l}{1{-x}^{2},x∈[-1,0]}\\{cos\frac{π}{2}x,x∈(0,1]}\end{array}\right.$,则函数y=f(x)-($\frac{1}{2}$)|x|在区间[-3,3]上的零点个数为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知复数z1,z2满足|z1|=1,|z2|=2,求|z1-2z2|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=x2-4a2lnx,若方程f(x)=2ax有唯一正实根,则实数a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设a、b∈R,方程x2+ax+b=0的两个复根与原点构成正三角形,求实数a、b之间的关系及b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.小波以游戏方式决定是参加学校合唱团还是参加学校排球队,游戏规则:从A1,A2,A3,A4,A5,A6(如图所示)这6个点中任取两点,记选取y轴上的点(A3,A4)的个数为X,若X=0就参加学校合唱团,否则就参加排球队.
(1)记“从从A1,A2,A3,A4,A5,A6中任取两点”为事件N,请列举事件N的所有可能情况;
(2)求小波不参加学校合唱团的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.正方体ABCD-A1B1C1D1的棱长为a,M、N、P、Q分别在棱A1D1、A1B1、B1C1、BC上移动,则四面体MNPQ的最大体积是$\frac{1}{6}$a3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知A,B,C三点不共线,A,B,D三点共线,$\overrightarrow{CD}$=t$\overrightarrow{CA}$+(2+t)$\overrightarrow{CB}$,则△CDB面积和△CDA的面积之比为1:1.

查看答案和解析>>

同步练习册答案