精英家教网 > 高中数学 > 题目详情
11.若复数z=-2+i,则$\frac{z•\overline z}{i}$=-5i.

分析 由复数z求出$\overline{z}$,然后代入则$\frac{z•\overline z}{i}$,利用复数代数形式的乘除运算化简得答案.

解答 解:由z=-2+i,得$\overline{z}=-2-i$,
则$\frac{z•\overline z}{i}$=$\frac{(-2+i)(-2-i)}{i}=\frac{5}{i}=\frac{-5i}{-{i}^{2}}=-5i$.
故答案为:-5i.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设数列{an}的通项公式为an=3n,且a2,a4,ak成等比数列,则数列k的值为(  )
A.9B.8C.7D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.今年我国许多省市雾霾频发,为增强市民的环境保护意识,某市面向全市学校征召100名教师做义务宣传志愿者,成立环境保护宣传组,现把该组的成员按年龄分成5组:第一组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45),得到的频率分布直方图如图所示.
(Ⅰ)若从第3,4,5组中用分层抽样的方法选出6名志愿者参加某社区的宣传活动,应从第3,4,5组各选出多少名志愿者?
(Ⅱ)在(Ⅰ)的条件下,该组织决定在这6名志愿者中随机选2名志愿者介绍宣传经验,求第4组至少有1名志愿者被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ex-aex(a∈R,e是自然对数的底数).
(1)讨论函数f(x)的单调性;
(2)当x∈R时,f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在一个个体数目为1002的总体中,要利用系统抽样抽取一个容量为50的样本,先用简单随机抽样删除两个个体,然后再从这1000个个体中抽50个个体,在这个过程中,每个个体被抽到的概率为(  )
A.$\frac{1}{20}$
B.$\frac{50}{1002}$
C.$\frac{1}{1001}$
D.有两个个体与其它个体被抽到的概率不相等

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点P在以点F1,F2分别为左、右焦点的双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上,且满足$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=0,tan∠PF1F2=$\frac{1}{3}$,则该双曲线的离心率是(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,点F为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)右焦点,圆A:(x-t)2+y2=$\frac{16}{3}$(t<0)与椭圆C的一个公共点为B(0,2),且直线FB与圆A相切于点B.
(Ⅰ)求t的值和椭圆C的标准方程;
(Ⅱ)若F′是椭圆C的左焦点,点P是椭圆C上除长轴上两个顶点外的任意一点,且∠F′PF=θ,求θ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,∠C=90°,且CA=CB=3,点M满足$\overrightarrow{BM}$=2$\overrightarrow{AM}$,则$\overrightarrow{CM}$$•\overrightarrow{CA}$=(  )
A.18B.3C.15D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设x>0,0<bx<ax<1,则正实数a,b的大小关系为(  )
A.1>a>bB.1>b>aC.1<a<bD.1<b<a

查看答案和解析>>

同步练习册答案