精英家教网 > 高中数学 > 题目详情
球的半径为2,它的内接圆柱的底面半径为1,则圆柱的侧面积为(  )
A、2
3
π
B、4
3
π
C、12π
D、24π
考点:球内接多面体,棱柱、棱锥、棱台的体积
专题:计算题,空间位置关系与距离
分析:求出内接圆柱的高,再求圆柱的侧面积.
解答: 解:∵球的半径为2,它的内接圆柱的底面半径为1,
∴内接圆柱的高为2
4-1
=2
3

∴圆柱的侧面积为2π×1×2
3
=4
3
π.
故选:B.
点评:本题考查圆柱的侧面积,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将二进制数1101化为十进制数为(  )
A、10B、11C、12D、13

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b是两条直线,α,β是两个平面,则下列说法中正确的是(  )
A、若a∥b,b∥α,则a∥α
B、若a⊥b,b⊥α,则a⊥α
C、若α∥β,a?α,则a∥β
D、若α⊥β,a?α,则a⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(2-a)(x-1)-2lnx,g(x)=xe1-x.(a∈R,e=2.71828…)
(Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)若函数f(x)在区间(0,
1
2
)
无零点,求a的最小值;
(Ⅲ)若对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的xi(i=1,2)使得f(xi)=g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的内角A,B,C所对的边分别为a,b,c.
(1)若A,B,C成等差数列,且AB=2,AC=2
3
,求△ABC的面积;
(2)若a,b,c成等比数列,且c=2a,求cos B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(ax2+bx+c)ex在x=1处取极值,且在点(0,f(0))处的切线方程为4x-y+5=0
(1)求a,b,c的值
(2)求函数f(x)的单调区间,并指出f(x)在x=1处取值是极大值还是极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知符号函数sgnx=
1,x>0
0,x=0
-1,x<0
,则不等式(x2-2)•sgnx>1的解集是(  )
A、(-1,1)∪(
3
,+∞)
B、(-1,0)∪(
3
,+∞)
C、(-∞,
3
]∪(
3
,+∞)
D、(-∞,-
3
)∪(-1,1)∪(
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,底面为正三角形,AA1⊥平面ABC,D,E,F分别为BC,B1C1,A1B1的中点.
(1)求证:BC⊥A1D;
(2)求证:平面BEF∥平面DA1C1

查看答案和解析>>

科目:高中数学 来源: 题型:

若数据组k1,k2,…,k8的平均数为4,方差为2,则3k1+2,3k2+2,…,3k8+2的平均数为
 
,方差为
 

查看答案和解析>>

同步练习册答案