精英家教网 > 高中数学 > 题目详情
设中心在坐标原点的椭圆M与双曲线2x2-2y2=1有公共焦点,且它们的离心率互为倒数
(Ⅰ)求椭圆M的方程;
(Ⅱ)过点A(2,0)的直线交椭圆M于P、Q两点,且满足OP⊥OQ,求直线PQ的方程.
(Ⅰ) 设椭圆M的方程为
x2
a2
+
y2
b2
=1(a>b>0)

则有
a2-b2=1
1
a
=
2
2

解得
a=
2
b=1

∴椭圆M的方程为
x2
2
+y2=1

(Ⅱ)当k不存在时,直线为x=2与椭圆无交点
当k存在时,设PQ:y=k(x-2)
代入
x2
2
+y2=1
整理得:(1+2k2)x2-8k2x+8k2-2=0
设P(x1,y1),Q(x2,y2),则有x1+x2=
8k2
1+2k2
x1x2=
8k2-2
1+2k2

y1y2=
2k2
1+2k2

∵OP⊥OQ,
∴y1y2+x1x2=0即
10k2-2
1+2k2
=0

解得:k=±
5
5

所求直线PQ的方程为y=±
5
5
(x-2)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设中心在坐标原点的椭圆M与双曲线2x2-2y2=1有公共焦点,且它们的离心率互为倒数
(Ⅰ)求椭圆M的方程;
(Ⅱ)过点A(2,0)的直线交椭圆M于P、Q两点,且满足OP⊥OQ,求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0)的焦点F与P(2,-1)关于直线l:x-y-2=0对称,中心在坐标原点的椭圆经过两点M(1,
7
2
),N(-
2
6
2
),且抛物线与椭圆交于两点A(xA,yA)和B(xB,yB),且xA<xB
(1)求出抛物线方程与椭圆的标准方程;
(2)若直线l′与抛物线相切于点A,试求直线l′与坐标轴所围成的三角形的面积;
(3)若(2)中直线l′与圆x2-2mx+y2+2y+m2-
24
25
=0恒有公共点,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知焦点在x轴上,中心在坐标原点的椭圆C的离心率为
4
5
,且过点(
10
2
3
,1).
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l分别切椭圆C与圆M:x2+y2=R2(其中3<R<5)于A、B两点,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年山东省青岛市部分学校高二(上)期末数学试卷(文科)(解析版) 题型:解答题

设中心在坐标原点的椭圆M与双曲线2x2-2y2=1有公共焦点,且它们的离心率互为倒数
(Ⅰ)求椭圆M的方程;
(Ⅱ)过点A(2,0)的直线交椭圆M于P、Q两点,且满足OP⊥OQ,求直线PQ的方程.

查看答案和解析>>

同步练习册答案