精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=$\left\{\begin{array}{l}{x+2,x≤-2}\\{{x}^{2},-2<x<2}\\{2x,x≥2}\end{array}\right.$,
(1)求f(-3),f[f(-3)].
(2)若f(a)=8,求a的值.

分析 (1)判断x的值所在的范围,代入分段函数求解即可;
(2)由f(a)=8可得$\left\{{\begin{array}{l}{a≤-2}\\{a+2=8}\end{array}}\right.$或$\left\{{\begin{array}{l}{-2<a<2}\\{{a^2}=8}\end{array}}\right.$或$\left\{{\begin{array}{l}{a≥2}\\{2a=8}\end{array}}\right.$,从而解得.

解答 解:(1)f(-3)=-3+2=-1,
f[f(-3)]=f(-1)=(-1)2=1;
(2)∵f(a)=8,
∴$\left\{{\begin{array}{l}{a≤-2}\\{a+2=8}\end{array}}\right.$或$\left\{{\begin{array}{l}{-2<a<2}\\{{a^2}=8}\end{array}}\right.$或$\left\{{\begin{array}{l}{a≥2}\\{2a=8}\end{array}}\right.$,
解得,a=4.

点评 本题考查了分段函数的一般解法及分类讨论的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.对于大于1的自然数m的三次幂可用奇数进行以下方式的“分裂”:23=$\left\{\begin{array}{l}{3}\\{5}\end{array}\right.$,33=$\left\{\begin{array}{l}{7}\\{9}\\{11}\end{array}\right.$,43=$\left\{\begin{array}{l}{13}\\{15}\\{17}\\{19}\end{array}\right.$,….仿此,若m3的“分裂数”中有一个是413,则m=20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个金鱼缸,现已注满水.有大、中、小三个假山,第一次把小假山沉入水中,第二次把小假山取出,把中假山沉入水中,第三次把中假山取出,把小假山和大假山一起沉入水中,现知道每次溢出水量的情况是:第一次是第二次的$\frac{1}{3}$.第三次是第二次的2倍,问三个假山体积之比(  )
A.1:3:5B.1:4:9C.3:6:7D.6:7:8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.等差数列{an}的前n项和为Sn,若当首项a1和公差d变化时,a3+a10+a11是一个定值,则下列选项中为定值的是(  )
A.S17B.S16C.S15D.S14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在平面直角坐标系xoy中,椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,直线l:y=$\frac{1}{2}$x与椭圆E相交于A,B两点,AB=$4\sqrt{5}$,C,D是椭圆E上异于A,B两点,且直线AC,BD相交于点M,直线AD,BC相交于点N.
(1)求a,b的值;
(2)求证:直线MN的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=log2(4-x2)定义域为(  )
A.[-2,2]B.(-2,2)C.(-∞,2)∪(2,+∞)D.(-∞,2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l经过点A(1,3),求:
(1)直线l在两坐标轴上的截距相等的直线方程;
(2)直线l与两坐标轴的正半轴围成三角形面积最小时的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题中,正确命题的序号为(  )
A.命题p:?x∈R,使得x2-1≥0,命题q:?x∈R,使得x2-x-1≥0,则命题p∨¬q是假命题
B.非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,“$\overrightarrow{a}$•$\overrightarrow{b}$>0”是“$\overrightarrow{a}$与$\overrightarrow{b}$夹角是锐角”的充要条件
C.“两直线2x-my-1=0与x+my-1=0垂直”是“$m=±\sqrt{2}$”的充要条件
D.“a=1”是“函数f(x)=x2+|x+a-1|(x∈R)为偶函数”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=|x-1|+|x-3a|+3a,x∈R.
(1)当a=1时,求不等式f(x)>7的解集;
(2)对任意m∈R+,x∈R恒有f(x)≥9-m-$\frac{4}{m}$,求实数a的取值范围.

查看答案和解析>>

同步练习册答案