精英家教网 > 高中数学 > 题目详情
(2013•日照二模)已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<ex的解集为(  )
分析:构造函数g(x)=
f(x)
ex
(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解
解答:解:∵y=f(x+2)为偶函数,∴y=f(x+2)的图象关于x=0对称
∴y=f(x)的图象关于x=2对称
∴f(4)=f(0)
又∵f(4)=1,∴f(0)=1
设g(x)=
f(x)
ex
(x∈R),则g′(x)=
f′(x)ex-f(x)ex 
(ex)2
=
f′(x)-f(x) 
ex

又∵f′(x)<f(x),∴f′(x)-f(x)<0
∴g′(x)<0,∴y=g(x)在定义域上单调递减
∵f(x)<ex
∴g(x)<1
又∵g(0)=
f(0)
e0
=1
∴g(x)<g(0)
∴x>0
故选B.
点评:本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•日照二模)如图:(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y与乘客量x之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图(2)(3)所示.
给出下说法:
①图(2)的建议是:提高成本,并提高票价;   ②图(2)的建议是:降低成本,并保持票价不变;
③图(3)的建议是:提高票价,并保持成本不变;④图(3)的建议是:提高票价,并降低成本.
其中所有说法正确的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•日照二模)设全集U={-2,-1,0,1,2},集合A={-1,1,2},B={-1,1},则A∩(?B)为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•日照二模)“x2-2x<0”是“0<x<4”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•日照二模)执行如图所示的程序,若输出的结果是4,则判断框内实数m的值可以是(  )

查看答案和解析>>

同步练习册答案