精英家教网 > 高中数学 > 题目详情
已知定点F(2,0)和定直线l:x=-2,动圆P过定点F与定直线l相切,记动圆圆心P的轨迹为曲线C.
(1)求曲线C的方程.
(2)若以M(2,3)为圆心的圆与抛物线交于A、B不同两点,且线段AB是此圆的直径时,求直线AB的方程.
分析:(1)根据动圆P过定点F与定直线l相切,故动圆圆心P到F的距离等于P到l的距离,根据抛物线的定义,可得P的轨迹C是以F为焦点,l为准线的抛物线.
(2)由(1)中抛物线的方程,利用设而不求的方法,结合线段AB是以M(2,3)为圆心的圆的直径,可得
y2-y1
x2-x1
=
8
y2+y1
且y2+y1=6,求出直线AB的斜率后,代入点斜式方程,可得答案.
解答:解:(1)由题意知,P到F的距离等于P到l的距离,
所以P的轨迹C是以F为焦点,l为准线的抛物线,
∵定点F(2,0)和定直线l:x=-2,
它的方程为y2=8x
(2)设A(x1,y1),B(x2,y2
y12=8x1y22=8x2
y2-y1
x2-x1
=
8
y2+y1

由AB为圆M(2,3)的直径知,y2+y1=6
故直线的斜率为
4
3

直线AB的方程为y-3=
4
3
(x-2)
,即4x-3y+1=0
点评:本题考查的知识点是抛物线的标准方程,直线的斜率公式,直线的点斜式方程,难度较小,属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定点F(2,0)和定直线l:x=
9
2
,若点P(x,y)到直线l的距离为d,且d=
3
2
|PF|
(1)求点P的轨迹方程;
(2)若F′(-2,0),求
PF
PF′
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点F(2,0),动圆P经过点F且与直线x=-2相切,记动圆的圆心P的轨迹为C.
(Ⅰ)求轨迹C的方程;
(Ⅱ)过点F作倾斜角为60°的直线l与轨迹C交于A(x1,y1)、B(x1,y2)两点,O为坐标原点,点M为轨迹C上一点,若向量
OM
=
OA
OB
,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)已知定点F(2,0),直线l:x=2,点P为坐标平面上的动点,过点P作直线l的垂线,垂足为点Q,且
FQ
⊥(
PF
+
PQ
)
.设动点P的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点F的直线l1与曲线C有两个不同的交点A、B,求证:
1
|AF|
+
1
|BF|
=
1
2

(3)记
OA
OB
的夹角为θ(O为坐标原点,A、B为(2)中的两点),求cosθ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)已知定点F(2,0),直线l:x=-2,点P为坐标平面上的动点,过点P作直线l的垂线,垂足为点Q,且
FQ
⊥(
PF
+
PQ
)

(1)求动点P所在曲线C的方程;
(2)直线l1过点F与曲线C交于A、B两个不同点,求证:
1
|AF|
+
1
|BF|
=
1
2

(3)记
OA
OB
的夹角为θ(O为坐标原点,A、B为(2)中的两点),求cosθ的最小值.

查看答案和解析>>

同步练习册答案